заход по илс что это
Заход на посадку по курсо-глиссадной системе
Состав и принцип работы КГС
Итак, из чего состоит КГС:
Теперь о том, как работают эти маяки. Возьмем за основу курсовой маяк и несколько упрощенно рассмотрим его работу. При работе маяк формирует 2 разночастотных сигнала, которые схематично можно показать как 2 лепестка, направленные вдоль траектории захода на посадку.
В случае, если самолет находится точно на пересечении этих двух лепестков, мощность обоих сигналов одинакова, соответственно разность их мощностей равна нулю, и индикаторы прибора выдают 0. Мы на курсе. Если самолет отклонился влево или вправо, то один сигнал начинает преобладать над другим. И чем дальше от линии курса, тем больше это преобладание. В результате этого за счет разницы в мощности сигнала приемник самолета точно устанавливает, насколько далеко мы от линии курса.
Глиссадный маяк работает точно по такому же принципу, только в вертикальной плоскости.
Читаем показания приборов
Итак, мы вошли в зону действия КГС. Планки на ПНП отшкалили, значит пора нам сориентироваться, где мы находимся и как нам надо пилотировать самолет, чтобы точно вписаться в траекторию захода.
Теперь давайте пройдемся по разным положениям самолета и посмотрим на индикацию прибора в положениях, указанных на общем рисунке.
2. Мы находимся в точке входа в глиссаду (ТВГ). Это точка, образованная пересечением глиссады с высотой круга. Средняя величина удаления ТВГ составляет примерно 12 км. Естественно, чем выше высота круга и чем меньше УНГ, тем дальше от порога ВПП находится ТВГ.
3. Мы находимся левее и выше. Надо довернуть вправо и увеличить скорость снижения.
4. Мы находимся левее и ниже. Приберем вертикальную и довернем вправо.
5. Мы находимся правее и выше. Довернем влево и увеличим вертикальную.
6. Мы правее и ниже. Догадайтесь, что нужно сделать 🙂
Ну в общем-то это все, что хотелось вам сообщить 🙂
Напоследок хочу сделать одно весьма важное дополнение.
Учтите, что чем ближе мы находимся к ВПП, тем меньше должны быть эволюции самолета, потому что прибор становится очень чувствительным. К примеру, если мы находимся на удалении 10 км от порога ВПП, положение курсовой планки на второй точке шкалы может означать боковое отклонение в 400 метров или более (это к примеру). Чтобы довернуть, нам понадобится изменить курс на 4-5 градусов или более. Если же мы находимся на удалении 2 км, то такое положение планки означает, что отклонения превысили предельно допустимые, и единственное, что нам остается, это уходить на второй круг. Чем ближе самолет к порогу ВПП, тем ближе к центру должна быть курсовая планка. В идеале конечно точно в центре 🙂 И соответственно, чем мы ближе, тем меньше должны быть эволюции самолета. Нет смысла закладывать 30-градусный крен в районе ближнего привода. Во-первых, это опасно на такой высоте, во-вторых вы просто не успеете довернуть, учитывая инерцию самолета.
То же самое касается и глиссады. Если мы находимся ниже глиссады, то на большом удалении нам иногда приходится уменьшать вертикальную до нуля, а на маленьком удалении это было бы неверно опять же из-за опасности перелета и, соответственно, выкатывания за ВПП.
Поэтому обязательно учитывайте удаление от порога ВПП, прежде чем начинать маневрирование. В общем-то поэтому ТВГ и сделали на таком большом удалении, чтобы вы успели поправить все ошибки и точно выполнить заход 🙂
Курсо-глиссадная система посадки (ИЛС).
КОНСПЕКТ
Проведения занятий с летно – инструкторским, летным и курсантским составом АЭ
Тема: «Посадочные системы».
Место проведения: методический класс АЭ.
2. Курсо-глиссадная система посадки (ИЛС).
3. Оборудование системы посадки (ОСП).
4. Отдельная приводная радиостанция (ОПРС).
5. Радиолокационная система посадки (РСП).
Общие положения.
Заход на посадку — один из заключительных этапов полета воздушного судна, непосредственно предшествующий посадке. Обеспечивает выведение воздушного судна на траекторию, которая является предпосадочной прямой, ведущей к точке приземления.
Заход на посадку может осуществляться как с использованием радионавигационного оборудования (и называется в таком случае заходом на посадку по приборам), так и визуально, при котором ориентирование осуществляется экипажем по естественной линии горизонта, наблюдаемой ВПП и другим ориентирам на местности. В последнем случае заход может называться визуальным (ВЗП), если является продолжением полета по ППП (правила полётов по приборам) или заходом ПВП, если является продолжением полета по ПВП (правила визуальных полётов).
Заход на посадку по приборам осуществляется экипажем воздушного судна с использованием бортового радионавигационного оборудования (или аэродромного радионавигационного оборудования). Основной задачей захода на посадку по приборам является обеспечение безопасности посадки в метеорологических условиях, не обеспечивающих безопасного визуального захода. Несмотря на то, что визуальный заход является более экономичным с точки зрения расхода топлива, его выбор остается на усмотрение экипажа и службы организации воздушного движения, которые могут руководствоваться не только соответствием текущей погоды метеоминимумам, но и требованиям обеспечения одновременного безопасного захода нескольких воздушных судов, то есть обеспечения требований эшелонирования.
Заходы на посадку по приборам могут быть выполнены с использованием различных наборов радионавигационного оборудования. Они подразделяются на точные и неточные.
Точный заход на посадку по приборам.
Точные заходы на посадку осуществляются с использованием точного наведения, как по горизонтали (бокового наведения), так и по вертикали, при которых у экипажа воздушного судна имеются сведения об отклонении, как от курса посадки, так и от глиссады.
К точным заходам на посадку по приборам относятся заходы по:
Категории точных заходов на посадку.
Неточный заход на посадку по приборам.
Заходы на посадку с использованием бокового наведения, но без использования вертикального наведения.
К неточным системам посадки относятся:
Значения посадочных метеоминимумов для неточной посадки указываются в аэронавигационных сборниках для каждого конкретного аэродрома и конкретного класса воздушного судна. Типичные значения находятся в пределах: видимость 1500—2000 м, высота нижней границы облаков 110—130 м.
Курсо-глиссадная система посадки (ИЛС).
Ку́рсо-глисса́дная система, КГС. В России, согласно действующему на 2010 год ГОСТу именуется — система инструментального захода на посадку радиомаячная. Наиболее распространённая в авиации радионавигационная система захода на посадку по приборам. В зависимости от длины волны делятся на системы метрового (англ. ILS (Instrument Landing System)) и сантиметрового диапазонов (англ. MLS, Microwave landing system — Микроволновая система посадки). КГС состоит из двух радиомаяков: курсового (КРМ) и глиссадного (ГРМ).
Рис 1. Курсовой радиомаяк. Рис. 2. Глиссадный радиомаяк.
Удаление ГРМ от порога ВПП определяется таким образом, чтобы при заданном угле наклона глиссады опорная точка (точка над торцом ВПП, через которую проходит прямолинейная часть глиссады) находилась на высоте 15±3 м для радиомаячных систем посадки I и II категории и 15+3−0 м для систем III категории. Угол наклона глиссады (УНГ) примерно равен 3°, но может зависеть от местности. Чем меньше УНГ, тем удобнее садиться ВС, так как ниже вертикальная скорость. В России в аэропортах, где местность не мешает низкому заходу, используется УНГ 2°40′. В горах или если глиссада проходит над городом, УНГ больше.
Рис. 3 Диаграммы направленности курсо-глиссадной системы посадки.
Внедрение точных заходов на посадку с использованием недорогих систем GPS приводит к замене ILS. Для обеспечения требуемой точности с помощью GPS обычно требуется только маломощный всенаправленный дополнительный сигнал, передаваемый из аэропорта, что значительно дешевле, чем использование нескольких больших и мощных передатчиков, необходимых для полной реализации ILS. К 2015 году количество аэропортов США, поддерживающих заходы на посадку по LPV, подобным ILS, превысило количество систем ILS, и ожидается, что это в конечном итоге приведет к отмене ILS в большинстве аэропортов.
СОДЕРЖАНИЕ
Принцип действия
Балочные системы
Точность системы обычно составляла порядка 3 градусов. Хотя это было полезно для направления самолета на взлетно-посадочную полосу, оно не было достаточно точным, чтобы безопасно вывести самолет на дальность видимости в плохую погоду; самолет обычно снижается со скоростью от 3 до 5 градусов, и если бы он был на 3 градуса ниже, он бы потерпел крушение. Лучи использовались только для бокового наведения, и одной системы было недостаточно для выполнения посадки в сильный дождь или туман. Тем не менее, окончательное решение о посадке было принято всего в 300 метрах от аэропорта.
Концепция ILS
ILS начинается с смешивания двух модулирующих сигналов с несущей, один с частотой 90 Гц, а другой с частотой 150 Гц. Это создает сигнал с пятью радиочастотами в общей сложности, несущей и четырьмя боковыми полосами. Этот комбинированный сигнал, известный как CSB для «несущей и боковых полос», равномерно передается антенной решеткой. CSB также отправляется в схему, которая подавляет исходную несущую, оставляя только четыре сигнала боковой полосы. Этот сигнал, известный как SBO для «только боковых полос», также отправляется на антенную решетку.
Приемник перед массивом будет принимать оба этих сигнала, смешанные вместе. Используя простые электронные фильтры, исходную несущую и две боковые полосы можно разделить и демодулировать для извлечения исходных сигналов с амплитудной модуляцией 90 и 150 Гц. Затем они усредняются для получения двух сигналов постоянного тока (DC). Каждый из этих сигналов представляет не силу исходного сигнала, а силу модуляции относительно несущей, которая изменяется в шаблоне широковещательной передачи. Это имеет большое преимущество в том, что измерение угла не зависит от диапазона.
Хотя схема кодирования сложна и требует значительного количества наземного оборудования, результирующий сигнал намного более точен, чем более старые системы на основе луча, и гораздо более устойчив к распространенным формам помех. Например, статика в сигнале будет одинаково влиять на оба субсигнала, поэтому не повлияет на результат. Аналогичным образом, изменения общей мощности сигнала по мере приближения воздушного судна к взлетно-посадочной полосе или изменения из-за замирания мало повлияют на результаты измерения, поскольку они обычно одинаково влияют на оба канала. Система подвержена эффектам искажения из- за многолучевого распространения из-за использования нескольких частот, но поскольку эти эффекты зависят от местности, они обычно фиксируются по местоположению и могут быть учтены посредством регулировки антенны или фазовращателей.
Кроме того, поскольку именно кодирование сигнала в луче содержит информацию об угле, а не мощность луча, сигнал не должен быть сильно сфокусирован в пространстве. В более старых системах луча точность равносигнальной области зависела от формы двух направленных сигналов, что требовало, чтобы они были относительно узкими. Схема ILS может быть намного шире. Обычно требуется, чтобы системы ILS можно было использовать в пределах 10 градусов по обе стороны от осевой линии взлетно-посадочной полосы на 25 морских милях (46 км; 29 миль) и 35 градусов с каждой стороны на 17 морских милях (31 км; 20 миль). Это позволяет использовать самые разные пути захода на посадку.
Многие иллюстрации концепции ILS часто показывают, что система работает более похожая на системы луча с сигналом 90 Гц с одной стороны и 150 с другой. Эти иллюстрации неточны; оба сигнала передаются по всей диаграмме направленности, меняется их относительная глубина модуляции.
Использование ILS
Самолет, приближающийся к взлетно-посадочной полосе, управляется приемниками ILS в самолете путем сравнения глубины модуляции. Многие самолеты могут направлять сигналы в автопилот для автоматического выполнения захода на посадку. ILS состоит из двух независимых подсистем. Локализатор обеспечивает боковое наведение; глиссада обеспечивает вертикальное наведение.
Локализатор
Курсор (LOC или LLZ до стандартизации ИКАО) представляет собой антенную решетку, обычно расположенную за пределами взлетно-посадочной полосы и обычно состоящую из нескольких пар направленных антенн.
Курсор позволяет самолету поворачиваться и совмещать самолет с взлетно-посадочной полосой. После этого пилоты активируют фазу захода на посадку (APP).
Склонность скольжения (G / S)
Пилот управляет самолетом таким образом, чтобы индикатор глиссады оставался в центре дисплея, чтобы гарантировать, что самолет следует глиссаде примерно на 3 ° над горизонтом (уровнем земли), чтобы оставаться над препятствиями и достигать взлетно-посадочной полосы в надлежащей точке приземления (т. Е. обеспечивает вертикальное наведение).
Ограничения
Из-за сложности систем курсового радиомаяка ILS и глиссады существуют некоторые ограничения. Системы курсового радиомаяка чувствительны к препятствиям в зоне трансляции сигнала, например, к большим зданиям или ангарам. Системы глиссады также ограничены местностью перед антеннами глиссады. Если местность наклонная или неровная, отражения могут создать неровную дорожку скольжения, вызывая нежелательные отклонения стрелки. Кроме того, поскольку сигналы ILS направляются в одном направлении за счет расположения решеток, глиссада поддерживает только заходы на посадку по прямой с постоянным углом снижения. Установка ILS может быть дорогостоящей из-за критериев размещения и сложности антенной системы.
Вариант
Идентификация
Мониторинг
Важно, чтобы любой отказ ILS обеспечить безопасное наведение был немедленно обнаружен пилотом. Для этого мониторы постоянно оценивают жизненно важные характеристики передач. Если обнаруживается какое-либо существенное отклонение, выходящее за строгие пределы, либо автоматически выключается ILS, либо компоненты навигации и опознавания снимаются с перевозчика. Любое из этих действий активирует индикацию («флаг отказа») на приборах самолета, использующего ILS.
Курс курсового радиомаяка
Маркерные маяки
На некоторых установках предусмотрены маркерные маяки, работающие на несущей частоте 75 МГц. При получении сигнала маркерного радиомаяка на приборной панели пилота включается индикатор, и пилот слышит сигнал радиомаяка. Расстояние от ВПП, на котором должно быть получено это указание, публикуется в документации для этого захода на посадку вместе с высотой, на которой воздушное судно должно находиться, если оно правильно установлено на ILS. Это обеспечивает проверку правильности работы глиссады. В современных установках ILS, DME устанавливается вместе с ILS, чтобы дополнять или заменять маркерные маяки. DME постоянно отображает расстояние самолета до взлетно-посадочной полосы.
Замена DME
Подходящее освещение
Высота решения / высота
Категории ILS
Категория | Высота решения | RVR |
---|---|---|
я | > 200 футов (60 м) | > 550 м (1800 футов) или видимость> 800 м (2600 футов) |
II | 100-200 футов (30-60 м) | ИКАО:> 350 м (1200 футов) FAA / JAA (EASA):> 300 м (1000 футов) |
III А | 700 футов (200 м) | |
III B | Специальные операции CAT II и CAT III |
В отличие от других операций, погодные минимумы CAT III не обеспечивают достаточных визуальных ориентиров, позволяющих совершить посадку вручную. Минимумы CAT IIIb зависят от контроля развертывания и резервирования автопилота, поскольку они дают пилоту достаточно времени, чтобы решить, приземлится ли самолет в зоне приземления (в основном CAT IIIa), и обеспечить безопасность во время развертывания (в основном CAT IIIb ). Следовательно, автоматическая система посадки является обязательной для выполнения операций категории III. Его надежность должна быть достаточной для управления воздушным судном до точки приземления при полетах по категории IIIa и путем перехода на безопасную скорость руления по категории CAT IIIb (и категории IIIc, если это разрешено). Тем не менее, некоторым операторам было предоставлено специальное разрешение на заходы на посадку по CAT III с ручным управлением с использованием наведения на лобовом дисплее (HUD), который предоставляет пилоту изображение, просматриваемое через лобовое стекло, с глазами, сфокусированными на бесконечности, необходимого электронного наведения для приземления. самолет без истинных внешних визуальных ориентиров.
В Соединенных Штатах аэропорты с подходами к посадке по категории III имеют списки категорий IIIa и IIIb или просто категории III на табличке для захода на посадку по приборам (правила терминала США). Минимальные значения RVR категории IIIb ограничиваются освещением ВПП / РД и вспомогательными средствами и соответствуют плану системы управления наземным движением в аэропорту (SMGCS). Для полетов ниже 600 футов RVR требуются огни осевой линии рулежной дорожки и красные огни полосы остановки. Если минимальные значения RVR CAT IIIb на конце взлетно-посадочной полосы составляют 600 футов (180 м), что является обычным показателем в США, подходы по ILS к этому концу взлетно-посадочной полосы с RVR ниже 600 футов (180 м) квалифицируются как CAT IIIc и требуют специального руления. процедуры, освещение и условия разрешения на посадку. Приказ FAA 8400.13D ограничивает CAT III RVR 300 футов или выше. Приказ 8400.13D (2009 г.) допускает подходы к взлетно-посадочным полосам категории II со специальным разрешением без огней приближения ALSF-2 и / или огней зоны приземления / осевой линии, что расширило число потенциальных взлетно-посадочных полос категории II.
Как для автоматических систем приземления, так и для систем HUD требуется специальное одобрение для конструкции оборудования, а также для каждой отдельной установки. В конструкции учтены дополнительные требования безопасности при эксплуатации воздушного судна вблизи земли и способность летного экипажа реагировать на аномалию системы. К оборудованию также предъявляются дополнительные требования по техническому обслуживанию, чтобы гарантировать, что оно способно поддерживать операции в условиях ограниченной видимости.
Конечно, почти вся эта подготовка пилотов и квалификационная работа проводится на тренажерах с разной степенью точности.
Использовать
В контролируемом аэропорту авиадиспетчерская служба будет направлять воздушное судно на курс курсового радиомаяка по заданным курсам, следя за тем, чтобы воздушные суда не подходили слишком близко друг к другу (выдерживали эшелонирование), а также максимально избегали задержек. Несколько самолетов могут находиться на ILS одновременно, на расстоянии нескольких миль друг от друга. Самолет, который повернул на входящий курс и находится в пределах двух с половиной градусов от курса курсового радиомаяка (отклонение на половину шкалы или меньше, показанное индикатором отклонения от курса), считается установленным на заходе на посадку. Обычно воздушное судно устанавливается на расстояние не менее 2 морских миль (3,7 км) до конечной точки захода на посадку (точки пересечения глиссады на указанной высоте).
Отклонение воздушного судна от оптимальной траектории указывается летному экипажу с помощью шкалы дисплея (переход с момента, когда движение аналогового измерителя показало отклонение от линии курса через напряжения, передаваемые с приемника ILS).
Выходной сигнал приемника ILS поступает в систему отображения (проекционный дисплей и проекционный дисплей, если они установлены) и может поступать в компьютер управления полетом. Процедура посадки воздушного судна может быть либо совмещенной, когда автопилот или компьютер управления полетом непосредственно управляет воздушным судном, а летный экипаж контролирует выполнение операции, либо отсоединенной, когда летный экипаж управляет воздушным судном вручную, чтобы держать индикаторы курсового радиомаяка и глиссады по центру.
История
Испытания системы ILS начались в 1929 году в США. Полнофункциональная базовая система была представлена в 1932 году в Центральном аэропорту Берлин- Темпельхоф (Германия), получившая название LFF или « луч Лоренца » по имени ее изобретателя, компании C. Lorenz AG. Совет по гражданской авиации (CAB) США санкционировал установку системы в 1941 году в шести местах. Первая посадка американского пассажирского авиалайнера с использованием ILS состоялась 26 января 1938 года, когда Boeing 247 D Пенсильванской компании Central Airlines вылетел из Вашингтона, округ Колумбия, в Питтсбург, штат Пенсильвания, и приземлился в метель, используя только систему посадки по приборам. Первая полностью автоматическая посадка с использованием ILS произошла в марте 1964 года в аэропорту Бедфорд в Великобритании.
Рынок
Поставщики
Ведущими производителями на рынке систем посадки по приборам являются:
Альтернативы
Будущее
Появление Глобальной системы позиционирования (GPS) обеспечивает альтернативный источник управления заходом на посадку для самолетов. В США глобальная система расширения (WAAS) доступна во многих регионах для обеспечения точного руководства в соответствии со стандартами категории I. Эквивалентная европейская геостационарная навигационная служба (EGNOS) была сертифицирована для использования в приложениях для обеспечения безопасности жизни в марте. 2011. Таким образом, количество систем ILS категории I может быть сокращено, однако в Соединенных Штатах нет планов по поэтапному отказу от каких-либо систем категории II или III.
Система локального расширения (LAAS) находится в стадии разработки для обеспечения минимумов Категории III или ниже. Управление наземной системы дополнения (GBAS) FAA в настоящее время работает с отраслью в ожидании сертификации первых наземных станций GBAS в Мемфисе, штат Теннесси; Сидней, Австралия; Бремен, Германия; Испания; и Ньюарк, штат Нью-Джерси. Все четыре страны установили системы GBAS и участвуют в деятельности по технической и оперативной оценке.
Группа компаний Honeywell и FAA получила одобрение на проектирование системы первого в мире нефедерального одобрения США для LAAS категории I в международном аэропорту Ньюарк Либерти, работающего в сентябре 2009 года, и эксплуатационного одобрения 28 сентября 2012 года.