что называется линейным уравнением с двумя переменными
Алгебра и начала математического анализа. 11 класс
Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №42. Линейные уравнения и неравенства с двумя переменными
Перечень вопросов, рассматриваемых в теме:
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. Учебник: Алгебра 9 кл с углубленным изучением математики Мнемозина, 2014.
Открытые электронные ресурсы:
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.
Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.
Теоретический материал для самостоятельного изучения
Уравнения, а также системы уравнений имеют давнюю историю. Нам известно, что уже в Древнем Вавилоне и Индии повседневные задачи, связанные с земляными работами или планированием военных расходов, а также астрономическими наблюдениями решались с помощью уравнений и их систем.
В то время еще не существовало привычного нам формального языка математики. Вавилоняне, также, как и индусы не использовали в своих трактатах привычные нам «икс» и «игрек». Не обозначали степень надстрочными индексами. И т.д. Их уравнения записаны в виде текстовых задач. Также, как и решения, не похожи на современные, а скорее напоминают цепочку логических рассуждений.
Вместе с тем, если перевести в привычный нам вид те уравнения, которые умели решать в Древнем Вавилоне, то мы увидим: . И в древнем индийском манускрипте «Ариабхаттиам», датируемом 499 годом нашей эры, также встречаются задачи, решаемые с помощью квадратных уравнений. Индийские мудрецы (слово ученый тоже еще не существовало) уже не ограничивались решением конкретных житейских задач, но и работали над решением квадратного уравнения в общем виде.
Привычный нам вид уравнения обретают только в конце шестнадцатого века, благодаря трудам Франсу Виета (1540 – 1603 гг.). Именно он, помимо прочих своих научных достижений обладает и неофициальным титулом «создатель алгебры». Поскольку разработал и активно внедрял символический язык алгебры – те самые, привычные нам «иксы и игреки».
1.Найдите уравнения, которые являются линейными.
4х + 5у = 10; ; у = 7х +4
Ответ: 4х + 5у = 10; у = 7х +4
Сегодня на уроке мы вспомним что такое линейные уравнения и неравенства с двумя переменными; системы линейный уравнений и неравенств, а также научимся изображать множество на плоскости, задаваемое линейным уравнением и неравенством.
Уравнение вида ах + by +с =0, где а,b,с – некоторые числа, называется линейным уравнением с двумя переменными х и у.
Решением уравнения ах + by +с =0, где а,b,с – некоторые числа, называется пара значений обращающая уравнение в верное числовое равенство.
Если одновременно а и b
, то уравнение ах + by +с =0 является уравнением некоторой прямой. Для построения прямой достаточно найти две точки этой прямой.
Построить график уравнения 2х+у =1
На координатной плоскости отметим точки с координатами (0;1) и (2;-3). Через две точки на плоскости проведем прямую. Полученная прямая является геометрической моделью уравнения 2х+у =1.
Линейным неравенством с двумя переменными называется неравенство вида ах + bу + с 0, где х и у – переменные, а, b, c – некоторые числа.
Решением неравенства с двумя переменными называется пара значений переменных, обращающая его в верное равенство.
Если каждое решение неравенства с двумя переменными изобразить точкой в координатной плоскости, то получится график этого неравенства. Он является некоторой фигурой.
Найти множество точек координатной плоскости, удовлетворяющих неравенству 3х – 2у +6 > 0.
Рисунок 1 – решение неравенства 3х – 2у +6 > 0
Если в линейном неравенстве с двумя переменными знак неравенства заменить знаком равенства, то получится линейное уравнение ах + by +с =0, графиком которого является прямая при условии, что и
. Прямая разбивает плоскость на две полуплоскости. Одна из них является графиком неравенства ах + bу + с 0
Чтобы решить неравенство ах + bу + c 0, достаточно взять какую-нибудь точку М1(х1; у1), не лежащую на прямой aх + bу + c = 0, и определить знак числа aх1 + bу1 + c.
Решение простых линейных уравнений
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие уравнения
Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.
В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении: Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа. Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством. Числовой коэффициент — число, которое стоит при неизвестной переменной. Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз: Как решать простые уравненияЧтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила. 1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный. Для примера рассмотрим простейшее уравнение: x+3=5 Начнем с того, что в каждом уравнении есть левая и правая часть. Перенесем 3 из левой части в правую и меняем знак на противоположный. Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2. Решим еще один пример: 6x = 5x + 10. Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус. Приведем подобные и завершим решение. 2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок. Применим правило при решении примера: 4x=8. При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение. Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица. Разделим каждую часть на 4. Как это выглядит: Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения: Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12 Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах. Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные. Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки. Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе. А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе. Примеры линейных уравненийТеперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе! Пример 1. Как правильно решить уравнение: 6х + 1 = 19. Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1. 5х — 15 + 2 = 3х — 2 + 2х — 1 Ответ: х — любое число. Пример 3. Решить: 4х = 1/8. Пример 4. Решить: 4(х + 2) = 6 — 7х. Пример 5. Решить: Пример 6. Как решить линейное уравнение: х + 7 = х + 4. 5х — 15 + 2 = 3х — 2 + 2х — 1 Пример 7. Решить: 2(х + 3) = 5 — 7х.. Линейное уравнение с двумя переменнымиУрок 39. Алгебра 7 классВ данный момент вы не можете посмотреть или раздать видеоурок ученикамЧтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге. Получите невероятные возможностиКонспект урока «Линейное уравнение с двумя переменными»· повторить что такое линейное уравнение с одной переменной и сколько решений может иметь такое уравнение; · ввести понятия «линейное уравнение с двумя переменными», «решение уравнения с двумя переменными», «равносильные уравнения». Ранее мы с вами рассматривали линейное уравнение с одной переменной. Сегодня на уроке мы познакомимся с линейным уравнением, но уже с двумя неизвестными. Давайте рассмотрим ситуацию Полученное равенство содержит две переменные. А поэтому такие равенства называют уравнениями с двумя переменными (или с двумя неизвестными). Посмотрите на примеры уравнений с двумя переменными Линейным уравнением с двумя переменными называется уравнение вида: То есть пара значений переменных (x = 60, y = 110) является решением этого уравнения. Отметим, что эти корни были найдены методом подбора, причём это не единственная пара чисел, удовлетворяющих нашему уравнению. Решением уравнения с двумя переменными называется пара значений переменных, которая обращает это уравнение в верное равенство. Вспомним, что при изучении уравнений с одной переменной, мы говорили о равносильных уравнениях, то есть уравнениях, которые имеют одни и те же корни. Аналогично можем сказать, что уравнения с двумя переменными, имеющие одни и те же решения, называются равносильными. Причем уравнения с двумя переменными, не имеющие решений, также являются равносильными. Равносильные уравнения обладают следующими свойствами: Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнения, равносильное данному; Если обе части уравнения умножить (или разделить) на одно и то же отличное от нуля число, то получится уравнение, равносильное данному. Снова вернёмся к нашему уравнению Но здесь важно знать, значение какой из переменных стоит на первом месте, а какой – на втором. Так в нашем случае сначала записано значение переменной x, а затем переменной y. И давайте рассмотрим ещё одну задачу. Решение уравнений в целых числах, то есть когда надо найти только целые значения переменных, подробно рассматривал древнегреческий математик Диофант. Поэтому уравнения с несколькими переменными, которые надо решить в целых числах, называют диофантовыми уравнениями. То есть уравнение, составленное в предыдущей задаче, является диофантовым, так как для него мы отыскивали только натуральные решения. И давайте рассмотрим примеры. Итак, на этом уроке мы рассмотрели линейное уравнение с двумя переменными и один из способов решения таких уравнений. Линейные уравнения. Виды линейных уравнений.Линейное уравнение — это алгебраическое уравнение. В этом уравнении полная степень составляющих его многочленов равна единице. Линейные уравнения представляют в таком виде: Линейное уравнение с одной переменной.Линейное уравнение с 1-ой переменной приводится к виду: Число корней зависимо от a и b: — Когда a=b=0, значит, у уравнения есть неограниченное число решений, так как — Когда a=0, b≠ 0, значит, у уравнения нет корней, так как — Когда a ≠ 0, значит, у уравнения есть только один корень Линейное уравнение с двумя переменными.Уравнением с переменной x является равенство типа A(x)=B(x), где A(x) и B(x) — выражения от x. При подстановке множества T значений x в уравнение получаем истинное числовое равенство, которое называется множеством истинности этого уравнения либо решение заданного уравнения, а все такие значения переменной — корни уравнения. Линейные уравнения 2-х переменных представляют в таком виде: — в общей форме: ax + by + c = 0, — в форме линейной функции: y = kx + m, где Решением либо корнями этого уравнения является такая пара значений переменных (x;y), которая превращает его в тождество. Этих решений (корней) у линейного уравнения с 2-мя переменными неограниченное количество. Геометрической моделью (графиком) данного уравнения есть прямая y=kx+m. Если в уравнении есть икс в квадрате, то такое уравнение называется квадратным уравнением. Линейное уравнение с двумя переменнымиЧто такое линейное уравнение с двумя переменными? С линейными уравнениями с двумя переменными мы имеем дело в 7, 8 классах и в более старших. Линейное уравнение с двумя переменными определениеОпределение линейного уравнения с двумя переменными Здесь a, b и c – числа, x и y – переменные. Линейное уравнение с двумя переменными примерПример линейного уравнения с двумя переменными В этом уравнении две переменные x и y, a = 8, b = 4, c = 5. Линейное уравнение с двумя переменнымиРешением линейного уравнения с двумя переменными является пара значений переменных, при подстановке которых в уравнение оно обращается в истинное равенство. Решите линейное уравнение с двумя переменнымиКак решать линейные уравнения с двумя переменными? Пример. Решите уравнение Выразим переменную игрек через переменную икс. Для этого перенесем 8x в правую часть уравнения, поменяв знак на противоположный Разделим обе части уравнения на четыре Выбираем произвольное значение икса, пусть это будет 7. Подставляем 7 вместо икса и находим значение игрека Теперь у нас есть пара значений переменных x = 7 и y = −12,75, обычно эту пару чисел записывают в скобках (7; −12,75), при подстановке которых в уравнение оно обращается в верное равенство. Таким образом решением нашего уравнения является пара чисел (7; −12,75). Есть ли другие решения уравнения?Есть и их бесконечно много. Выбирая произвольно значения икса мы расчитываем соответствующее значение игрека и получаем очередное решение уравнения. Например, если взять x = 2, то Мы получили новую пару чисел (2; −2,75), которая является решенеием уравнения.
|
---|