Инструкция по отысканию «земли» в сети 3-6-10-35кВ
1.Общая часть.
1.1. Настоящая инструкция составлена на основании: «Инструкции. ГКД 34.20.507-2003 «Правил технической эксплуатации электрических станций и сетей » издание первое, 2003 г». «Инструкции. ДНАОП 1.1.10-1.01-97 «Правил безопасной эксплуатации электроустановок » издание второе, 2000 г». «Инструкции. СОУ-Н МПЕ40.1.20.563:2004 «Ликвидации аварий и технологических нарушений режима на энергопредприятиях и в энергообъединениях», 2005 г.».
1.2. Знание настоящей инструкции обязательно для: а) начальника ОДС; б) зам. начальника ОДС; в) диспетчеров ОДС; г) начальников РЭСов; д) главных инженеров РЭСов; е) зам. начальников РЭС по оперативной работе; ж) диспетчеров ОДГ; з) мастеров РЭСов; и) оперативного (дежурного) и оперативно-производственного персонала РЭСов; к) начальников групп подстанций; л) мастеров групп подстанций; м) оперативного (дежурного) и оперативно-производственного персонала групп подстанций; н) персонала СПС; о) персонала СРС.
2. Признаки работы сети с замыканием «на землю».
2.1. В сетях 3 – 35кВ замыкание «на землю», получившее название «земля в сети», является наиболее частым видом повреждения и составляет 70 – 75 % всех случаев повреждений. Причинами возникновения замыкания «на землю» могут быть :
2.2. В зависимости от характера повреждений, «земля» в сети может быть: полной или частичной, устойчивой или перемежающейся.
2.3. Признаком работы сети в режиме замыкания «на землю» свидетельствует повышение фазного напряжения на неповрежденных фазах и снижение на поврежденной фазе по отношению к земле.
Из-за изменения контакта между концами оборванного провода и землей колеблется. Работа электродвигателей невозможна.
Замыкание на «землю» оборванного провода со стороны потребителя
Перекос показаний вольтметров контроля изоляции – «неполная земля». Вольтметр поврежденной фазы Uа дает большее показания, чем на остальных фазах Uв, Uc.
Несимметричное. Uас – наименьшее. Работа эл.двигателей невозможна.
Обрыв провода без замыкания на «землю»
Перекос в показаниях приборов конт-роля изоляции – «неполная земля». Вольтметр поврежденной фазы Uа дает большее показания, чем на остальных фазах Uв, Uc.
Несимметричное. Uас – наименьшее. Работа эл.двигателей невозможна.
Примечание: а) показания контроля изоляции на питающем конце; б) напряжение у потребителя.
2.4. При металлическом замыкании на “землю” одной из фаз показания прибора, контролирующего изоляцию этой фазы, равняются нулю, а показания приборов двух других фаз возрастают в 1.73 раза по отношению к фазному.В случае неполного замыкания на “землю”, т.е. при замыкании через некоторое сопротивление, показания прибора, контролирующего изоляцию поврежденной фазы, уменьшаются на величину DU-величина падения напряжения, а двух других увеличиваются на величину Uл-DU,где Uл- линейное напряжение сети где возникло замыкание на “землю”.При перемежающейся (неустойчивой) отклонения в показаниях приборов то уменьшается, то увеличиваются.
2.5. Контроль состояния изоляции в сетях 3 – 35кВ на подстанциях и в части РП осуществляется автоматически с выдачей сигнала на панель ЦС или ДП. Приборы контроля изоляции подключены к вторичным цепям напряжения соответствующих ТН. Учитывая то, что КИЗ на ПС и РП выполнен по схеме на реле минимального и максимального напряжений при появлении данного сигнала персонал обязан убедится по приборам КИЗ в том, что сеть действительно работает в режиме замыкания на «землю».
2.6. Персонал обязан уметь отличать по показаниям приборов КИЗ наличие “земли” в сети от других ненормальностей в работе оборудования и сетей, которые могут привести к срабатыванию автоматического контроля изоляции:
2.6.1. Неполная “земля” – перекос может возникнуть при плановом или аварийном объединении сети с изолированной нейтралью с сетью с компенсированной нейтралью (имеющей дугогасящие катушки). 2.6.2. Перекос может возникнуть при перегорании провода ВЛ. 2.6.3. Перекос может возникнуть при неполнофазном отключении (включении) МВ. 2.6.4. В сетях с резонансной (точной) настройкой дугогасящих катушек (ДГК) при «земле» в соседней сети и наличии двухцепных ВЛ может возникнуть перекос. 2.6.5. При значительном отличии емкостей фаз сети по отношению к земле может возникать постоянный перекос. 2.6.6. При перегорании предохранителей на стороне высшего напряжения ТН фазы «А», показания приборов КИЗ будут в следующих пределах : Uа – от 0 до 0,5Uф; Uв, Uc равны Uф. 2.6.7. При перегорании предохранителей на стороне низкого напряжения ТН фазы “А”, показания приборов КИЗ будут в следующих пределах : Uа – от 0 до 0,1Uф; Uв, Uс равны Uф. 2.6.8. В сетях с резонансной настройкой дугогасящих катушек при замыканиях в соседней сети, электрически не связанной с первой, при наличии ВЛ в двухцепном исполнении, каждая из которых включена в соответствующую сеть.
3.Оперативные действие при появлении замыкания “землю”.
3.1. При возникновении замыкания на землю персонал должен немедленно приступить к отысканию места повреждения и устранить его в кратчайший срок.
3.2. В зависимости от состояния оборудования допускается работа с заземленной фазой в сетях 6-10кВ, а также в сетях, к которым подключены электродвигатели высокого напряжения, если ток замыкания на “землю” меньше 5А, но не более 2 часов. В исключительных случаях с разрешения главного инженера ЭС допускается работа сети с замыканием на «землю» продолжительностью до 6 часов. Если установлено, что место замыкания на землю находятся не в обмотке статора электродвигателя, по усмотрению главного инженера предприятия эксплуатирующего электродвигатели, в исключительных случаях, допускается работа с «землей» в сети продолжительностью до 6 часов.
3.3. В сетях, имеющих дугогасящие катушки, время работы сети с замыканием на “землю” определяется условием работы ДКГ, а именно температура верхних слоев масла не должна превышать 90 0С, контролировать температуру масла следует через каждые 30 минут с записью в оперативном журнале. Отключение ДГК при работе сети с “землей” допускается лишь на время замера температуры масла ДГК.
Производить осмотры оборудования и оперативные переключения необходимо с применением защитных средств без напоминания диспетчера. Следует помнить, что операции разъединителями находящимися под напряжением при наличии в сети «земли» ЗАПРЕЩЕНЫ. Это связано с тем что на ПС и РП отсутствует контроль величины тока замыкания на “землю”.
3.4. При явлениях феррорезонанса, появляющегося в некомпенсированных сетях при повышенных уровнях рабочего напряжения, может возникнуть длительный колебательный процесс (опасный для ТН). Это явление сопровождается ростом показаний приборов КИЗ Uа, Uв, Uс >> Uф. Либо может возникнуть мгновенное «опрокидывание» фазы при этом Uа > Uф. При появлении феррорезонанса необходимо изменить емкость сети. Это достигается включением ШСМВ (СМВ), предварительно проверив отсутствие замыкания на “землю” или отключением ненагруженных линий. 3.5. Если появление замыкания на “землю” совпало по времени с включением выключателя какого-либо присоединения, оперативный персонал обязан немедленно отключить этот выключатель и убедиться, что “земля” исчезла. 3.6. Автоматическое отключение какой-либо линии с успешным АПВ и появление замыкания на “землю” в этот момент, в большинстве случаев является признаком наличия замыкания на этой линии.
4. Методы отыскания замыкания на “землю”
4.1. Руководство по отысканию и устранение замыкания на “землю” возлагается на лицо в оперативном управлении, которого находится данная часть электроустановки согласно диспетчерского распределения управления оборудованием (смотреть Приложение А), по согласованию с вышестоящим оперативным персоналом, в оперативном ведении которого находится оборудование.
4.2. Отыскание места замыкания на “землю” осуществляется путем производства целенаправленных оперативных переключений, сопровождаемых постоянным контролем показаний приборов КИЗ.
4.3.Метод последовательного деления и многократного перегруппирования сети на участки, электрически не связанные между собой: при этом перебираются варианты различной конфигурации этих участков, благодаря чему удается выявить элемент с поврежденной изоляцией или значительно уменьшить размер участка в котором этот элемент находится. Этот метод применим для участков сети которые могут иметь два или более источников питания.
4.3.1. При замыкании систем шин (секций) 6 – 10кВ, на которых имеются ДГК, оснащенные автоматическим регулированием (РАНК – 2), необходимо выводить из работы автоматику (снять питание с РАНК – 2 отключением автоматов) и вводить в работу только при нормальном режиме работы сети. 4.3.2. При объединении сети с компенсированной нейтралью с сетью с изолированной нейтралью возможно возникновение опасных колебательных процессов (режим отделения или подключения ДГК к сети с “землей” ). Поэтому ЗАПРЕЩЕНОк сети без ДГК и наличии в ней “земли” подключать сеть с ДГК (необходимо предварительно ДГК отключать от сети). 4.3.3. Включение на параллельную работу двух секций шин 6кВ в РП, при наличии “земли” в сети 6кВ ЗАПРЕЩЕНО. 4.3.4. На подстанциях ЗАПРЕЩЕНО объединять две секции или системы шин 6-10кВ при замыкании на “землю” одновременно на обеих секциях или системах сборных шин. 4.3.5. Допускается при отыскании “земли” в сети 35кВ кратковременное объединение по стороне 6-10кВ для перевода нагрузок, т.е. через трансформаторную связь.
4.4.Метод поочередного отключения параллельно работающих объектов возможен, если:
4.4.1. Отключение не несет ущерб потребителю. 4.4.2. Не будут возникать недопустимые перегрузки на оборудовании. 4.4.3. Не произойдет недопустимое снижение напряжения.
4.5.Метод поочередного кратковременного отключения тупиковых ВЛ (продолжительностью не более 1-2 сек) возможен после того, как:
4.5.1. По первым двум методам круг поиска места замыкания сведен к наименьшему по размерам участку. 4.5.2. На всех подстанциях этого участка произведен осмотр оборудования, включая осмотр вводов ВЛ. 4.5.3. Получено согласие потребителя. ПРИМЕЧАНИЕ:
5. Последовательность действий персонала при отыскании места замыкания на “землю”.
5.12. Проверка силового трансформатора:
5.13. Проверка трансформатора напряжения:
5.14. Проверка ТСН, включенного на СШ (секцию) через разъединитель (без МВ):
5.15. Проверка шинных разъединителей:
Приложение А
ПЕРЕЧЕНЬ
3.1. ВЛ-6 – 10кВ РЭС. 3.2. ТП, РП РЭС. 3.3. МВ, ЛР, ШР, ЗН на ЛР в сторону линии отходящих от шин ПС присоединений РЭС. 4.Оборудование, находящееся в оперативном управлении начальника (мастера) группы ПС: 4.1. Отходящие от шин ПС потребительские присоединения 3 – 10кВ.
ПРИМЕЧАНИЕ: На потребительских ПС-35кВ и тупиковых ПС-110 кВ оборудование РУ на стороне высшего напряжения, силовые трансформаторы, системы (секции) шин 6 – 35кВ находятся в оперативном ведении диспетчера ОДС и оперативном управлении потребителя.
В электроустановках рабочим напряжением 6-35 кВ с изолированной нейтралью, при повреждении или нарушении изоляции, падении провода и т.д. возникает замыкание на землю. Режим однофазного замыкания на землю в сети с изолированной нейтралью аварийным не является. Следовательно, автоматического отключения поврежденного участка электрической сети не будет.
Данный режим работы является опасным для изоляции оборудования, так как фазные напряжения при этом значительно увеличиваются. Это в свою очередь приводит к пробою изоляции и переходу из однофазного в двухфазное замыкание на землю.
Кроме того, замыкание на землю очень опасно для людей, в частности для обслуживающего персонала (при возникновении повреждения на территории ОРУ или ЗРУ). При этом высока вероятность поражения электрическим током в результате растекания токов на землю (шагового напряжения).
Следовательно, оперативному персоналу, который осуществляет обслуживание электроустановки, необходимо в кратчайший срок устранить возникшее повреждение, то есть определить место повреждения.
Замыкание на землю бывает нескольких видов: металлическое замыкание, неполное замыкание через электрическую дугу и замыкание на землю через поврежденную изоляцию токоведущих частей.
Контроль изоляции в электроустановках 6-35кВ осуществляется при помощи:
— реле минимального напряжения, которые включены на фазные напряжения ТН;
— реле напряжения, которые включены в обмотку разомкнутого треугольника;
— токовых реле, которые включены к выходу фильтра токов нулевой последовательности;
— вольтметров контроля изоляции.
Показания вольтметров контроля изоляции:
— при металлическом замыкании на землю: на поврежденной фазе прибор показывает «ноль», при этом напряжение на двух других фазах увеличивается в 1,73 раза, то есть равно линейному напряжению сети;
— при замыкании на землю через дугу: на поврежденной фазе «ноль», на других фазах напряжение увеличивается в 3,5-4,5 раз;
— при замыкании на землю через сниженное сопротивление изоляции показания вольтметра контроля изоляции несимметричны. Происходит так называемый «перекос» фаз сети.
В зависимости от выполненной схемы контроля изоляции, осуществляется сигнализация «замыкания на землю» с указанием конкретной поврежденной фазы, так и без определения фазы. В последнем случае поврежденная фаза определяется по показаниям киловольтметров контроля изоляции того или иного участка сети. Фиксировать показания вольтметров контроля изоляции необходимо в обоих случаях.
Кроме того, существуют ложное срабатывание сигнала земля.
Перечислим основные причины ложного срабатывания сигнала «земля» в сети 6-35кВ:
— значительное отличие емкостей фаз относительно земли;
— неполнофазное отключение трансформатора;
— подключение к участку сети другого некомпенсированного участка сети, в том числе автоматическое (работа АВР);
— обрыв фазы (перегорание предохранителя) по стороне ВН или НН силового трансформатора. При этом будет незначительный перекос напряжений;
— обрыв фазы (перегорание предохранителей, отключение автоматического выключателя или другая причина) трансформатора напряжения, который предназначен для контроля изоляции данного участка сети. При обрыве фазы по стороне НН одна фаза будет показывать ноль, а две другие фазное напряжение. При обрыве фазы по высокой стороне (ВН) показания приборов контроля изоляции будут несимметричные. При этом определить, сгорел предохранитель или нет по показаниям приборов сложно, так как перекос незначительный.
Рассмотрим случай незначительного перекоса фаз (ложное срабатывание сигнала замыкания на землю). Когда перегорает предохранитель по высокой стороне ТН, кратковременно появляется сигнал «земля», затем наблюдается незначительный перекос фазных и линейных напряжений. Причиной такого перекоса может быть отличные емкости фаз по отношению к земле, несимметричная нагрузка потребителя.
В данном случае можно попробовать поочередно отключить присоединения, которые питаются от данного участка сети (секции или системы шин). Если показания приборов контроля изоляции не изменяются, то высока вероятность того, что причиной такого перекоса напряжений является перегорание предохранителя по стороне ВН трансформатора напряжения.
Действия оперативного персонала электроустановки по отысканию места замыкания на «землю».
Отыскание однофазного замыкания осуществляется при помощи специального прибора или методом поочередных отключений. В данном случае производится поочередное отключение присоединений, запитанных от секции (системы) шин, где ТН показывает наличие повреждения, а также присоединения участков электрической сети, которая электрически связана с этой секцией (системой) шин.
Если после отключения линии сигнал «земля» пропал, то это свидетельствует о том, что замыкание на «землю» было на данной линии. Данное присоединение можно ввести в работу только после выяснения причины возникновения однофазного замыкания.
Если методом поочередных отключений отходящих присоединений поврежденный участок найти не удалось, то следует отключить все присоединения участка сети, где появилась «земля», убедиться в том, что сигнал о однофазном замыкании устранился. Затем необходимо поочередно включить отходящие присоединения. Если включение одной из отходящих линий совпало с появлением сигнала «земля», то данное присоединение необходимо отключить и не вводить в работу до выяснения причины срабатывания сигнала «земля».
Соответственно, если при включении в работу предварительно выведенного в ремонт присоединения появилась «земля» данное присоединение должно быть немедленно отключено.
Бывают также ситуации, когда при отключении всех отходящих линий сигнал «земля» не устраняется. Это свидетельствует о том, что возникло повреждение на оборудовании подстанции, например, на участке от силового трансформатора до секции шин включительно. Прежде всего, необходимо определить, повреждение находится на секции шин или на другом оборудовании (вводной выключатель, ошиновка от силового трансформатора до вводного выключателя).
Для этого отключаем вводной выключатель данной секции, включаем секционный выключатель. Если по секции, к которой присоединен этот участок сети, появился сигнал «земля», то повреждение находится на секции шин. Поврежденная секция должна быть выведена в ремонт для устранения повреждения.
Если сигнал «земля» отсутствует, то повреждение находится на участке от силового трансформатора до вводного выключателя секции включительно. В данном случае необходимо произвести осмотр оборудования данного участка распределительного устройства на предмет наличия повреждений. Если причиной возникновения «земли» является пробой изоляции, то, скорее всего, визуально повреждение найти не удастся.
Для отыскания повреждения необходимо вывести данный участок распределительного устройства в ремонт. Отыскание дефекта изоляции производится электролабораторными испытаниями оборудования.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Чтобы случайно не ударило током от стиральной машины или электропечи
Любая металлическая поверхность незаземленного электроприбора потенциально опасна.
Когда строят частный дом, заранее разрабатывают схему электропроводки. Одна из ее частей — заземление. Конечно, лампочки будут гореть, а чайник — работать и без заземления. Но если в стиральной машине протечет вода, напряжение появится на корпусе машинки и при соприкосновении человека может ударить током.
Чтобы этого не произошло, делают заземление. Я электромонтер и живу в частном доме, поэтому знаю, как сделать заземление с нуля, если только строите, или как все проверить, если покупаете готовый дом.
Вот о чем расскажу в статье:
Что такое заземление
Заземление — это соединение корпусов всех электроприборов в доме с землей через контур заземляющего устройства. Для этого во всей системе, включая кабель электроприбора, есть отдельная жила. Она идет от розеток через щиток в заземляющий контур, который вкопан в грунт. Прибор, подключенный к такой розетке, защищен: если он будет неисправен и на его металлических деталях появится напряжение, избыточный ток уйдет в землю. В худшем случае на корпусе останется небольшой, безопасный для человека заряд. При касании он будет ощущаться как легкое покалывание.
Чем заземление отличается от зануления. Раньше заземление не делали: считали, что это дорого. Делали зануление: соединяли электроприборы с нулевой шиной в щитке и уже ее замыкали на землю. Вместо трехжильного кабеля — фаза, ноль, земля — использовали двухжильный, где есть только фаза и ноль.
Когда работает прибор, нулевой провод находится под напряжением, поэтому при занулении пробой на корпус прибора равносилен короткому замыканию. Сработает автомат в щитке — «выбьет пробки», а потом электричество выключится.
Зануление запрещено в жилых, общественных, административных и бытовых зданиях.
Зачем нужно заземление
Заземление в частных домах нужно, чтобы обезопасить жильцов от поражения электричеством. Через розетки заземляют все электроприборы: чайники, электроплиты, стиральные машины.
Бойлеры также заземляют через розетки, а еще отдельным проводом делают заземление на корпус — на случай, если бак потечет. В большинство бойлеров встроено устройство защитного отключения — УЗО, которое отключит нагреватель при утечке тока. Заземление в этом случае отведет остатки напряжения.
В бане заземление особенно необходимо, так как вода — хороший проводник тока. Иногда при монтаже проводки в бане хозяева применяют не специальный, а обычный электрический кабель, его изоляция плавится от высоких температур. Оголившийся кабель может передать напряжение на разлившуюся воду или, например, через воду на металлическую печь.
Еще кабель могут проложить под фольгированной теплоизоляцией, которая станет проводником для тока. А бывает, в бане делают теплый пол, и из-за неисправности изоляции людей начинает бить током везде, где разлита вода.
Схемы заземления
Системы заземления различаются по типам и способам подключения нулевого проводника.
Нулевые проводники бывают трех типов:
Если проводов от опоры к дому три в однофазной или пять в трехфазной сети, то защитных проводников два: N — функциональный, или рабочий, ноль (провод синего цвета) и PE — защитный ноль, провод желто-зеленого цвета.
Система TN-C. Рабочий ноль N и PE-проводник в этой системе совмещены в один провод. Рабочий ноль N подключен к контуру заземления рядом с трансформаторной подстанцией.
При TN-C в банях и влажных помещениях дома электроприборы нужно заземлять отдельно. То есть, например, ставить розетку с заземляющим контактом для стиральной машины и от этой розетки прокладывать отдельный провод на вкопанный в грунт контур заземления.
❗️ Схему TN-C считают небезопасной и почти не используют.
Система TN-C-S. На пути от трансформаторной подстанции до ввода в здание нулевой рабочий N и защитный проводник PE совмещены. На вводе в здание PEN разделяется на отдельный нулевой N и защитный проводник PE. В щитке шина заземления и нулевая шина объединяются перемычкой.
Если, например, дерево упадет на нулевой провод и оборвет его, на заземляющей шине PE в доме появится напряжение. Все заземленные металлические корпуса приборов окажутся под напряжением. Например, корпус бойлера в котельной или металлической печи в бане. То же самое случится, если на улице перехлестнутся нулевой и фазный провода. Ноль на подстанции отгорит, а на контуре заземления появится ток.
Система TN-C-S — основная для любых зданий. Она считается самой надежной.
При организации схемы ТТ обязательно используют устройства защитного отключения — УЗО. Ставят вводное УЗО с уставкой — пороговым значением силы тока, при котором УЗО срабатывает, — 100—300 мА. Это так называемое противопожарное УЗО, которое защищает от утечки тока. На линии электроприборов ставят УЗО на 10—30 мА. УЗО обязательно совмещают с автоматическими выключателями, которые защищают линию от короткого замыкания и перегрева.
Устройство контура заземления
При коротком замыкании или утечке тока напряжение уходит с электроприбора в контур заземления. Контур — это, как правило, металлический треугольник, который закапывают в грунт рядом с домом. Контур заземления нужно делать только при системе TT.
Элементы контура заземления
Вот из чего состоит система заземления частного дома:
Контур заземления нельзя делать из подручных конструкций, например проходящих в земле металлических водопроводных труб. Это небезопасно, а еще такие трубы быстрее ржавеют и разрушаются.
Заземляющий электрод. В качестве электродов обычно берут металлический прут диаметром не менее 18 мм или металлические уголки 50 × 50 мм. Уголки заостряют на концах, чтобы их удобнее было забивать в грунт. Типовая длина прута или уголков — три метра. Этого достаточно для большинства грунтов.
Наилучшие показатели сопротивления у электродов из меди. Электроды из обычной арматуры, наоборот, неэффективны в контуре заземления. Для обвязки электродов используют стальные полосы.
Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле
Материал
Профиль сечения
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Черная сталь
Круглый для вертикальных заземлителей
16
—
—
Круглый для горизонтальных заземлителей
10
—
—
Прямоугольный
—
100
4
Угловой
—
100
4
Трубный
32
—
3,5
Оцинкованная сталь
Круглый для вертикальных заземлителей
12
—
—
Круглый для горизонтальных заземлителей
10
—
—
Прямоугольный
—
75
3
Трубный
25
—
2
Медь
Круглый
12
—
—
Прямоугольный
—
50
2
Трубный
20
—
2
Канат многопроволочный
1,8 (диаметр каждой проволоки)
35
—
Защита заземления. Штыри контура заземления должны плотно входить в грунт и соприкасаться с ним на максимальной площади. Поэтому элементы заземления запрещено красить.
Чтобы предотвратить образование ржавчины на стальных полосах, используют антикоррозионные составы. Сварные соединения контура обрабатывают битумной мастикой или смолой.
Виды контуров заземления
Геометрия контура заземления зависит в основном от удобства монтажа. Это может быть треугольник, квадрат, любая другая геометрическая фигура или забитые в линию стержни.
Треугольник. Это самый распространенный вариант контура заземления. В землю забиваются три стержня. В идеале расстояние между ними должно быть не меньше трех метров, но в зависимости от места на участке делают и меньше. Должен получиться равносторонний треугольник.
Линейный контур. Контур заземления в виде линии применяют там, где нет места для треугольника. Линейный контур удобно закопать вдоль забора или стены дома. Количество электродов может быть любым: чем больше, тем лучше показатели сопротивления контура.
Расчет заземления
Чтобы контур заземления правильно работал, перед его монтажом нужно сделать расчет. Неверно рассчитанный контур будет плохо отводить ток или вообще не будет выполнять свою функцию — получится, что все элементы заземления сделаны, но ничего не работает.
Общее сопротивление контура заземления в жилых зданиях не должно превышать 4 Ом. Чем ниже сопротивление, тем меньше напряжение, которое возникнет на корпусе электроприборов при каких-либо проблемах.
Еще нужно учитывать ключевой параметр для находящегося в земле контура заземления — сопротивление растеканию тока. Это то, насколько эффективно контур рассеивает ток в землю. На сопротивление растеканию влияет множество параметров: сопротивление грунта, количество стержней и расстояние между ними, материал стержней и даже время года.
Сопротивление грунта. Чем ниже сопротивление грунта, тем лучше заземлитель будет отводить ток. Например, в торфянике сопротивление минимально: напряжение уйдет в землю, даже если контур не сильно заглублен или не выдержаны рекомендуемые расстояния между электродами.
Гравий или шлак обладают большим сопротивлением: забитый в них контур может вовсе не работать.
Сопротивления грунтов
Тип грунта
Примерное сопротивление, Ом·м
ПГС, влажный песок
300—500
Смесь глины и песка
100—150
Чернозем
50—60
Глина
50—60
Садовая земля
30—40
Суглинок с золой и пеплом
30—40
Торф
20—30
Если грунт «жесткий», применяют ряд мер, чтобы заземлитель работал:
Размеры и расстояния для заземляющих электродов. Чтобы рассчитать расстояние между стержнями электродов, берут длину стержня и умножают на коэффициент 2,2. Например, при длине стержня в три метра расстояние между ними должно быть: 2,2 × 3 = 6,6 м. На практике такие расстояние не всегда удается выдержать из-за нехватки места на участке. Электроды, забитые на меньшее расстояние, также будут работать. Но ухудшится эффективность контура заземления, уменьшится сопротивление растеканию.
Снизить сопротивление контура можно установкой дополнительных электродов. Однако монтировать их вблизи от существующих бесполезно. Ток будет стекать с двух электродов на один и тот же участок. Поэтому заземлители нужно разносить: например, изменить геометрию контура и сделать вместо треугольника квадрат или линию с пятью электродами.
Правила и требования к контуру заземления
Глубина забивания штырей. Штыри-заземлители должны уходить в грунт ниже глубины промерзания как минимум на 60—100 см.
Например, в Архангельске грунт промерзает зимой на 1,8 м. Штыри нужно забивать минимум на 2,8 м. Глубина также зависит от типа грунта: чем его сопротивление хуже, тем глубже должны быть штыри.
Заземление и молниезащита. Если в доме сделана молниезащита, ее желательно объединить с внутренней системой заземления. По нормам эти системы должны быть общими.
п. 3.2.3.1 инструкции по устройству молниезащитыPDF, 936 КБ
Если молниезащиту и внутреннее заземление дома объединяют, в грунте делают один контур, а не два. По сути, это две отдельные системы. Молниеотвод работает как заземлитель для внешнего сверхмощного напряжения — удара молнии. Молниеотвод собирают из толстых прутков, которые не сгорят, если по ним пропускать ток в несколько тысяч ампер. Заземление в доме работает только с бытовым напряжением, для него используют провод того же сечения, что идет в розетки.
На вводе в щиток ставят устройство защиты от импульсных перенапряжений — УЗИП. Оно гарантирует, что импульс молнии от молниеотвода через объединенный контур не пройдет в дом.
УЗИП часто ставят и при раздельных контурах заземлений. В том числе если нет молниеотвода. Так делают, чтобы спасти проводку, в случае если молния попадет в уличные провода или в землю рядом с домом.
При объединении обе системы заземления включают в систему уравнивания потенциалов — СУП. В такой системе все металлические части конструкций дома и все металлические коммуникации подводят проводами к главной шине заземления. То есть тянут отдельный провод заземления, например, от ванной. Еще один провод — от газовой трубы, еще один — от металлического короба вентиляции и так далее.
Если СУП нет, при ударе молнии возникнет разница потенциалов и пробой между элементами молниезащиты и металлическими конструкциями. Например, молния ударит в трос-молниеприемник на крыше, а на чердаке — кабель освещения под напряжением. Если нет СУП, из-за разницы потенциалов между тросом и кабелем начнет искрить, несмотря на то, что их разделяет крыша. Может начаться пожар.
При устройстве СУП к главной заземляющей шине рекомендуют подводить:
Сечение провода для уравнивания потенциалов не должно быть меньше сечения жилы вводного провода.
Как сделать монтаж контура заземления
Выбор места. Контур заземления делают недалеко от дома: как правило, не дальше двух метров. Это позволит сэкономить на длине проводника, соединяющего контур со щитком. Лучше выбирать влажное место: рядом с прудом, в низине или у огорода. Влага даст лучший контакт штырей с грунтом. Если дом стоит на сваях или ленточном фундаменте, допускается делать контур прямо под домом.
Еще смотрят на тип грунта. Бывает, при строительстве делали выборку, привезли много песка и около дома песчаная почва. А чуть дальше — глина или чернозем. В таком случае контур делают на большем расстоянии от дома в более подходящей почве.
Земляные работы. Последовательность земляных работ:
Нельзя готовить «колодцы» для заземлителей при помощи мотобура или других инструментов. Штыри должны заходить в грунт плотно и без зазоров, только так контур будет нормально работать.
Монтаж конструкции. Последовательность действий при монтаже:
Ввод в дом. Полосу от контура нужно вывести на цоколь здания и закрепить на ней болт 10 мм. С его помощью соединить полосу с заземляющим проводником — кабелем желто-зеленого цвета. Кабель должен быть проложен в щиток к главной шине заземления.
Норматив сечения заземляющего проводника зависит от сечения фазного провода. Рекомендую медный провод сечением 6 мм.
Проверка и контроль. Согласно нормам, каждые 12 лет нужно проверять сопротивление контура заземления. Это нужно делать, так как части контура находятся в земле и могут сгнить или прийти в негодность. Кроме того, не исключены механические повреждения: например, из-за подвижности грунта могут переломиться сварные соединения.
Проверять сопротивление контура заземления лучше летом или зимой, когда грунт имеет наибольшее сопротивление.
Работа приборов основана на пропускании тока через пробные электроды. Это металлические колышки, которые временно втыкаются в грунт на расстоянии 20—30 м от контура. Колышки-электроды вместе с контуром образуют треугольник. При подаче напряжения прибор определит сопротивление контура.
Что лучше — купить готовый комплект заземления или сделать самостоятельно
Можно купить готовый комплект заземления. Его преимущество — быстрота установки. В большинстве случаев ничего не нужно будет варить, все соединения делаются при помощи заводского крепежа.
Еще считается, что заводские электроды более надежны, меньше гниют в земле, так как покрыты спецсоставами в промышленных условиях, — заводы применяют гальваническое омеднение.
Если делать все самостоятельно, получится сэкономить.