защитный интервал 11ax что это

Wi-Fi 6 (802.11ax) – что это такое? Все что нужно знать о новом стандарте Wi-Fi

Wi-Fi 6 и 802.11ax – это одно и то же. Просто в организации Wi‑Fi Alliance решили дать более простые и понятные названия для стандартов Wi-Fi. Так стандарт 802.11n стал Wi-Fi 4, 802.11ac – Wi-Fi 5, а новый 802.11ax получил название Wi-Fi 6. Все просто и понятно.

Развитие беспроводных сетей происходит очень быстро. Появляется необходимость в увеличении скорости передачи данных и в подключении большого количества устройств. Появляется все больше точек доступа, которые мешают друг другу и создают помехи. Именно на решение этих проблем ориентировались специалисты из Wi‑Fi Alliance при разработке Wi-Fi 6. Какие улучшения были внедрены в новый стандарт, как это повлияло на работу подключения, стабильность и скорость – мы рассмотрим в этой статье. Постараюсь объяснить на простом языке. Так же отвечу на самые популярные вопросы связанные с Wi-Fi 6.

Что нового в Wi‑Fi 6 и чем этот стандарт лучше предыдущего?

Мы рассмотрим 4 основных улучшения:

Скорость в сетях Wi‑Fi 6

Скорость удалось увеличить за счет изменения алгоритма кодирования информации. Если предыдущий стандарт использовал 8‑битное кодирование информации, то новый стандарт использует 10‑битное кодирование.

защитный интервал 11ax что это. Смотреть фото защитный интервал 11ax что это. Смотреть картинку защитный интервал 11ax что это. Картинка про защитный интервал 11ax что это. Фото защитный интервал 11ax что это

Важный момент, что стандарт 802.11ax может работать в диапазоне 2.4 ГГц и 5 ГГц.

Улучшенная работа при подключении большого количества устройств

Чем больше устройств подключено к роутеру и чем активнее они используют соединение – тем ниже скорость и стабильность подключения. В Wi‑Fi 6 эта ситуация сильно улучшилась. Роутеры с поддержку более старых стандартов Wi-Fi могут одновременно обмениваться данным максимум с несколькими устройствами. Благодаря технологии OFDMA, которая появилась в Wi‑Fi 6, появилась возможность вести параллельный обмен данными с большим количеством устройств. Идет передача более коротких пакетов, но большему количеству устройств. Графика с сайта TP-Link:

защитный интервал 11ax что это. Смотреть фото защитный интервал 11ax что это. Смотреть картинку защитный интервал 11ax что это. Картинка про защитный интервал 11ax что это. Фото защитный интервал 11ax что это

Так устройства получают пакеты данных одновременно, а не ждут своей очереди. Это значительно увеличивает пропускную способность сети и скорость подключения. Особенно при подключении к роутеру большого количества устройств.

Улучшенная работа в местах с большим количеством Wi-Fi сетей

Если не все, то многие знают, что соседние Wi-Fi сети создают помехи и сети пересекаются между собой. Это негативно влияет на скорость и стабильность подключения. С появлением поддержки диапазона 5 ГГц удалось немного разгрузить сети. Но так как роутеры с поддержкой диапазона 5 ГГц пользуются большой популярностью, в этом диапазоне так же могут возникнуть проблемы с помехами.

Функция BSS Color, которая появилась в Wi-Fi 6 подписывает каждый пакет данных цифровой подписью конкретной сети. То есть роутер/приемник может различать пакеты данных от соседних сетей и просто игнорировать их. Это снижает влияние соседних сетей, даже если они находятся на одном канале с вашей сетью.

защитный интервал 11ax что это. Смотреть фото защитный интервал 11ax что это. Смотреть картинку защитный интервал 11ax что это. Картинка про защитный интервал 11ax что это. Фото защитный интервал 11ax что это

Уменьшенное потребление энергии

Target Wake Time – это функция, которая сообщает устройствам (клиентам) когда им нужно пробуждаться для обмена данными с точкой доступа. То есть устройства не всегда находятся в режиме ожидания и тратят энергию, а только когда это необходимо. Это в первую очередь актуально для мобильных устройств.

Ответы на популярные вопросы о Wi-Fi 802.11ax

Отвечу на несколько популярных вопросов. Если у вас есть другие вопросы по этой теме – задавайте их в комментариях. Я буду дополнять статью отвечая на ваши вопросы.

Увеличится ли покрытие Wi-Fi после перехода на стандарт 802.11ax?

Нет, покрытие сети (радиус действия) не увеличится. Этот стандарт работает на том же диапазоне 2.4 ГГц и 5 ГГц. Радиус действия больше зависит от мощности передатчика, который установлен в роутере. Ну и от антенн. А вообще, мощность всех роутеров примерно одинаковая, так как она ограничена законодательством определенной странны.

Покупать ли роутер с поддержкой Wi-Fi 6 в 2020 году?

В статье с рекомендациями по выбору роутера в 2020 году я не рекомендовал пока покупать эти роутеры. Почему? Стандарт очень новый. В сети есть информация, что окончательное утверждение стандарта Wi-Fi 6 запланировано на середину 2020 года. Роутеры, которые уже есть в продаже могут оказаться «сырыми». Я бы подождал до начала 2021 года и там уже смотрел, какие варианты есть на рынке и что можно приобрести. Да и цены на это оборудование должны немного снизиться.

Но если очень хочется и у вас есть устройства с поддержкой 802.11ax – покупайте.

Совместим ли роутер с Wi-Fi 6 со старыми устройствами?

Да, полная обратная совместимость. К новому роутеру который поддерживает стандарт 802.11ax вы сможете подключить даже старое устройство с поддержкой 802.11g.

Источник

Особенности Wi-Fi 6

Введение

Wi-Fi 6 (802.11ax), основанный на стандарте 802.11ac, позволяет повысить скорость передачи данных и пропускную способность не только новых, но и уже существующих сетей при работе с приложениями нового поколения за счет увеличения эффективности, гибкости и обеспечения масштабируемости.

Ограничения Wi-Fi

Наиболее важными показателями работы Wi-Fi являются: полоса пропускания (BW), количество битов данных на поднесущей (SC) и количество пространственных каналов (SS). На рис. 1 сравниваются основные стандарты Wi-Fi: 802.11g (2003 г.), 802.11n (2009 г.) и 802.11ac (2013 и 2016 г., альтернативное название — Wi-Fi 5).

Вместе эти параметры определяют максимально доступную скорость передачи данных. Она равна произведению количества поднесущих на количество битов данных в символе и количество пространственных каналов, поделенное на длительность символа. При этом количество поднесущих зависит от полосы пропускания. Количество битов данных в символе определяется схемами модуляции и кодирования. Длительность символа учитывает защитный интервал.

Устройства Wi-Fi оптимальны для бытовых приложений, небольших офисов и магазинов. При наличии достаточного количества точек доступа они также эффективны в отелях, терминалах аэропортов, офисах и сетях среднего размера. Недостатком является тот факт, что чем больше точек доступа, тем более загруженным становится эфир, что усиливает интерференцию. На рис. 1 перечислены ограничивающие факторы для каждого параметра. Так, полоса пропускания регулируется нормативными актами, а остальные параметры — техническими факторами: количество битов на поднесущую зависит от условий связи в РЧ-канале, а количество пространственных каналов определяется размерами устройства, поскольку требуется установить несколько антенн.

защитный интервал 11ax что это. Смотреть фото защитный интервал 11ax что это. Смотреть картинку защитный интервал 11ax что это. Картинка про защитный интервал 11ax что это. Фото защитный интервал 11ax что это

Рис. 1. Развитие стандартов Wi-Fi

Повышение качества сети Wi-Fi

Для повышения качества связи по Wi-Fi необходимо воспользоваться одним из следующих способов или их комбинацией:

Рассмотрим эти подходы подробнее.

Схемы модуляции

В настоящее время в сетях Wi-Fi применяется схема, основанная на множественном доступе к несущей с предотвращением коллизий (CSMA/CA) и предназначенная для сетей с ограниченным количеством абонентов.

Однако по мере увеличения количества абонентов длина пакета уменьшается, качество связи снижается из-за увеличения периода ожидания или простоя, поскольку передатчики детектируют постоянный трафик (рис. 2). Из этого рисунка видно, что при количестве станций больше 20 качество связи резко падает.

защитный интервал 11ax что это. Смотреть фото защитный интервал 11ax что это. Смотреть картинку защитный интервал 11ax что это. Картинка про защитный интервал 11ax что это. Фото защитный интервал 11ax что это

Рис. 2. Зависимость средней пропускной способности сети Wi-Fi от количества активных станций

Управление доступом и планирование

Подход CSMA/CA предполагает предварительное прослушивание канала, затем передачу. Его можно использовать только в случае, когда абоненты осведомлены о присутствии друг друга. Однако может возникнуть проблема скрытого узла. Рассмотрим пример.

Пусть имеются три узла. А и В видят друг друга и точку доступа, С — скрыт: он видит только точку доступа (рис. 3).

защитный интервал 11ax что это. Смотреть фото защитный интервал 11ax что это. Смотреть картинку защитный интервал 11ax что это. Картинка про защитный интервал 11ax что это. Фото защитный интервал 11ax что это

Рис. 3. Без координации скрытый узел создает интерференцию и может провоцировать потерю пакета. Узлы А, В скрыты от С, и наоборот

Решением является использование координационной функции. Перед передачей устанавливается связь в два этапа (рис. 4): абонентское устройство запрашивает передачу (сообщение request-to-send, RTS) либо точка доступа вещает о наличии свободного канала (сообщение clear-to-send, CTS). Таким образом решается проблема со скрытыми узлами, однако при этом не обязательно повышается общая эффективность сети, поскольку функции управления требуют ресурсов и вносят задержки.

защитный интервал 11ax что это. Смотреть фото защитный интервал 11ax что это. Смотреть картинку защитный интервал 11ax что это. Картинка про защитный интервал 11ax что это. Фото защитный интервал 11ax что это

Рис. 4. Использование координационной функции DCS с сообщениями RTS/CTS для предотвращения коллизий, вызванных активностью скрытых узлов

Защитные интервалы

В настоящее время защитные интервалы Wi-Fi очень коротки и не позволяют справиться с межсимвольной интерференцией, которая часто возникает в средах с несколькими трактами прохождения сигнала, когда его задержка велика.

Внутри помещения, как правило, задержка не превышает 0,5 мкс, а вне помещения она достигает 3 мкс. Этого достаточно для появления интерференции, поскольку длина символа составляет 3,2 мкс (рис. 5).

защитный интервал 11ax что это. Смотреть фото защитный интервал 11ax что это. Смотреть картинку защитный интервал 11ax что это. Картинка про защитный интервал 11ax что это. Фото защитный интервал 11ax что это

Рис. 5. Использование более широких интервалов позволяет ослабить межсимвольную интерференцию при работе вне помещений, когда сигнал имеет множество путей прохождения

Одно из возможных решений — расширение защитного интервала при работе вне помещения. При этом увеличивается задержка сигнала.

Применение нескольких приемных и передающих антенн (MIMO) дает хороший результат: матрица из четырех приемных и четырех передающих антенн (4×4) обеспечивает четырехкратное увеличение скорости передачи по сравнению с одиночным потоком. Однако на практике бывает сложно обеспечить такое количество антенн, особенно в компактных устройствах, например в смартфонах, в которых, как правило, встроены две антенны. При этом появляется возможность обратиться к многопользовательскому подходу (MU-MIMO), когда передатчик с четырьмя антеннами устанавливает соединения 2×2 с многопользовательскими устройствами, оснащенными двумя антеннами (рис. 6). Необходимо четко разделить нисходящий (DL) и восходящий (UL) потоки между приемником и передатчиком. Как правило, для этого требуется высокая направленность луча, которая обеспечивается за счет электронного управления ФАР.

защитный интервал 11ax что это. Смотреть фото защитный интервал 11ax что это. Смотреть картинку защитный интервал 11ax что это. Картинка про защитный интервал 11ax что это. Фото защитный интервал 11ax что это

Рис. 6. Эта конфигурация MU-MIMO со схемой формирования луча позволяет удвоить эффективную скорость передачи данных

Возможности для IoT

Стандарт IEEE 802.11ah предусматривает три функции, предназначенные для Wi-Fi 6. Первая из них — модуляция двумя несущими. Каждый символ отображается на двух поднесущих, широко разнесенных по частоте. Общий эффект заключается в увеличении чувствительности приемника на несколько децибел, что может оказаться востребованным в системах, используемых вне помещений. Вторая функция — целевое время ожидания (target wait time, TWT) — форма планирования, при которой пользовательское оборудование сообщает точке доступа свое доступное окно связи. При этом ослабляется борьба за право передачи и, что важнее, снижается мощность потребления удаленных устройств за счет отказа от постоянного прослушивания канала в ожидании возможности передачи (рис. 7).

защитный интервал 11ax что это. Смотреть фото защитный интервал 11ax что это. Смотреть картинку защитный интервал 11ax что это. Картинка про защитный интервал 11ax что это. Фото защитный интервал 11ax что это

Рис. 7. Использование TWT позволяет оптимизировать мощность потребления и снизить нагрузку на сеть

Поскольку эти устройства способны работать в плотных средах, требуется выделить базовый набор служб (basic service set, BSS), которые передаются в этом же диапазоне. Решение получило название «пространственное повторное использование».

Для того чтобы отличить кадры от специфичных BSS, применяется цветовая маркировка (BSS coloring). Каждой точке доступа назначается свой цвет. Абонентские станции могут игнорировать сигналы с цветовым кодом, отличным от требуемого.

Повышение эффективности

Итак, текущее определение Wi-Fi 6 включает восемь главных элементов, предназначенных для создания физического уровня (PHY) беспроводной передачи с высокой эффективностью (high-efficiency wireless, HEW). Они перечислены в таблице 1: частотные диапазоны, ширина каналов, расстояние между поднесущими, схема кодирования, длительность символа, длительность защитного интервала, схемы передачи, количество пространственных потоков на пользователя.

Таблица 1. Восемь главных элементов, обеспечивающих высокую эффективность Wi-Fi 6

Элементы физического уровня беспроводной передачи с высокой эффективностью Wi-Fi 6

Примечание

2,4; 5 ГГц (6 или 7 ГГц)

обеспечивает гибкость в загруженных средах

20, 40, 80, 80+80, 160 МГц

повышает пропускную способность для передачи данных

Схема передачи (шифрование)

снижает задержку для индивидуальных пользователей, повышает эффективность для большого количества пользователей

Расстояние между поднесущими

снижает нагрузку, вносимую защитным интервалом

обеспечивает работу в режиме многолучевости

Длительность защитного интервала

обеспечивает работу в режиме многолучевости

BPSK, QPSK, 16QAM, 64QMA, 256QAM, 1024QAM

повышает пропускную способность

Кол-во пространственных каналов на пользователя

SU-MIMO: ≤ 8; MU-MIMO: ≤ 4

управляет активностью ресурсных блоков при передаче в любом направлении

Рассмотрим, как схемы передачи влияют на эффективность Wi-Fi 6.

Метод доступа OFDMA обеспечивает более высокую эффективность за счет применения временного и частотного ресурсов, мощности и синхронизации между станциями и пользователями. Хотя максимальная скорость передачи не увеличивается на физическом уровне, такая схема позволяет чередовать одновременные передачи от большого количества пользователей, сокращая задержку для каждого из них.

Благодаря увеличению плотности поднесущих сети Wi-Fi 6 способны снизить с 20 до 6% нагрузку, вызванную защитными интервалами (GI). Использование нескольких более длинных символов и защитных интервалов позволяет динамически адаптировать сеть под эксплуатацию внутри или вне помещения в условиях многолучевости распространения сигнала, а также при его ослаблении.

Модуляция 1024QAM повышает пропускную способность почти на 25%. Однако для достижения этого уровня необходимо обеспечить хорошие условия в канале и исключительную точность модуляции, величину вектора ошибки порядка –35 дБм в передатчике.

Случай многопользовательской передачи — самый сложный. MU-MIMO в сочетании с OFDMA позволяет эффективно управлять передачей в обоих направлениях с помощью ресурсных блоков (resource unit, RU). Основная концепция, заимствованная из 4G LTE, предоставляет возможность понять не только принцип работы Wi-Fi 6, но и методы тестирования и валидации новых устройств, поддерживающих этот стандарт.

В таблице 2 приведены возможные способы управления ресурсными блоками. Например, простые схемы связи требуют полосу 1,9 МГц, 26 поднесущих и два пилотных сигнала. Напротив, высокоскоростной обмен может занимать полосу 153,2 МГц, использовать 996 тонов и 32 пилотных сигнала.

Таблица 2. Количество ресурсных блоков на канал в Wi-Fi 6

Несущие

Пилот.

Полоса пропускания (данные), МГц

Источник

Что такое 802.11ax – обзор нового стандарта WI-FI 6

Экскурс в историю развития группы 802.11

По данным немецкого аналитического агентства на 2019 год в мире ежедневно около 15 миллиардов устройств подключается к Wi-Fi сети. Подсчитано, что уже через год это число может возрасти до 20 миллиардов.

Начиная с 2012 года, и по сегодняшний день, 802.11ac является последней действующей ревизией Wi-Fi.

Улучшения от 802.11n к 802.11ac

В стандарте 802.11ac увеличение скорости происходит за счет 3 улучшений:

Обратите внимание! Найти устройства с 8×8 можно только в провайдерском сегменте, но зато есть задел на будущее расширение функционала.

Конструктивные ограничения и экономичность, из-за которых продукты 802.11n находились в одном, двух или трех пространственных потоках, не сильно изменились для 802.11ac. Устройства первой волны стандарта 802.11ac построены на частоте 80 МГц и на физическом уровне работают на скорости до 433 Мбит/с (нижний уровень), 867 Мбит/с (средний уровень) или 1300 Мбит/с (верхний уровень).

802.11ас Wave 2

Устройства «второй волны» 802.11ac поддерживают большее количество каналов связи и пространственных потоков, при этом возможные конфигурации продукта работают на скорости до 3,47 Гбит/с.

В Wave 2 добавили поддержку таких технологий как MU-MIMO (многопользовательское планирование) и Beamforming (формирование луча).

MU-MIMO означает многопользовательский, множественный вход, множественный выход и является беспроводной технологией, позволяющей взаимодействовать маршрутизаторам с несколькими пользователями одновременно.

Больше, лучше, быстрее – новая мантра 802.11ax

Специфика 802.11ax

Точки доступа 802.11ax

На рынке есть точки доступа 802.11ax, и уже сейчас можно протестировать новый стандарт Wi-Fi 6. Точки доступа, которые выпущены до начала сертификации, могут не поддерживать некоторые ключевые функции стандарта 802.11ax. Однако, когда они станут доступны, можно будет обновить программное обеспечение ТД для включения этих функций. Точно так же обстояло дело с внедрением предыдущих поколений, таких как 802.11ac и 802.11n.

Эволюция развития Wi-Fi стандартов

16 сентября 2019 года Wi-Fi Alliance объявил об официальном запуске сертифицированной программы Wi-Fi Certified 6, которая обещает более высокую скорость беспроводного соединения, меньшую задержку, увеличенное время автономной работы и меньшую загрузку сети.

8 новых возможностей и преимущества технологии 802.11ax

*- уже используется в 802.11ac

OFDMA в каналах DownLink и UpLink

OFDMA (множественный доступ с ортогональным частотным разделением каналов) обеспечивает возможность установления Uplink/Downlink соединений между точкой доступа и несколькими клиентами одновременно за счет выделения для отдельных клиентов подмножеств поднесущих, называемых «ресурсными единицами» (Resource Units, RU). Это одна из наиболее сложных функций в стандарте 802.11ax.

OFDMA в канале UpLink по работе эквивалентен OFDMA в DownLink, но в этом случае несколько клиентских устройств осуществляют передачу одновременно на разных группах поднесущих в одном и том же канале. OFDMA UpLink канала сложнее в управлении OFDMA DownLink канала, поскольку необходимо координировать множество разных клиентов: для этого точка доступа передает триггерные кадры, чтобы указать, какие подканалы может использовать каждый клиент.

Если клиент один, ТД отдаст ему весь канал, но как только в сети появятся новые клиенты, пропускная способность канала будет перераспределена между ними.

Важная особенность технологии OFDMA

Передача данных может осуществляться на тех поднесущих, которые для данного пользователя наименее подвержены частотно-селективной интерференции. Для выбора таких поднесущих каждая точка доступа отправляет отчеты о качестве передачи с использованием разных поднесущих.

Формат кадра Wi-Fi6

Каждый кадр начинается с преамбулы, которая состоит из двух частей:

Есть и другие преимущества. Количество защитных и нулевых поднесущих по каналу может быть уменьшено как процент от количества используемых поднесущих, что снова увеличивает эффективную скорость передачи данных в данном канале.

Важно знать! Приведенные выше цифры показывают увеличение используемых поднесущих на

10% по сравнению со стандартом 802.11ac после учета коэффициента 4x.

Более длинный символ OFDM позволяет увеличить длину циклического префикса, не жертвуя спектральной эффективностью, что, в свою очередь, обеспечивает повышенную устойчивость к разбросам с большой задержкой, особенно в условиях вне помещения.

Уменьшая циклический префикс до минимального символьного времени, мы увеличиваем спектральную эффективность и устойчивость к условиям многолучевого распространения сигнала. Так же снижается чувствительность к джиттеру в передающем канале в многопользовательском режиме. Есть, конечно, и некоторые побочные эффекты. Точность частоты, необходимая для успешной демодуляции более близко расположенных поднесущих, является более строгой. Кроме того, быстрое преобразование Фурье (БПФ) требует немного более сложной схемотехники и вычислительной мощности.

Многопользовательский MIMO на прием и передачу

Расширена функция 802.11ac в канале DL, где точка доступа определяет, что условия многолучевого распространения позволяют передавать фреймы по одному и тому же каналу разным приёмникам одновременно за счёт использования нескольких пространственных потоков.

802.11ax увеличивает размер групп MU-MIMO во входящем потоке, обеспечивая более эффективную работу Wi-Fi сети. Многопользовательский MIMO исходящего канала является новым дополнением к 802.11ax, но откладывается до второй волны (Wave 2).

Это надо знать! MIMO 8TXх8RX:8SS обеспечивает одновременную передачу до 8 пространственных потоков в обоих направлениях.

Модуляция 1024-QAM и увеличенная длина символа OFDM

Символ OFDM является основным строительным блоком передачи в Wi-Fi сетях. Основные характеристики: размер быстрого преобразования Фурье (БПФ или FFT – Fast Fourier Transform), разнесение поднесущих и длительность символа OFDM связаны, учитывая фиксированную ширину канала. В Wi-FI 6 разнесение поднесущих уменьшается в 4 раза, а длительность символа OFDM увеличивается в 4 раза.

Предусмотрено увеличение защитного интервала (Guard Interval, GI) между OFDM-символами, что позволяет уменьшить межсимвольную интерференцию и обеспечивает более устойчивую связь в помещениях и в смешанных средах – помещение/улица.

Переход от 256-QAM к 1024-QAM увеличивает число битов, переносимых на символ OFDM, с 8 до 10, что повышает скорость передачи данных и эффективность использования спектра на 25%. Но, как и прежде, улучшение работает в условиях, где уровень сигнала высокий, а шум низкий. Это связано с тем, что приемник должен принять решение об уровне модуляции, выбрав одно из 32 состояний вдоль каждой оси (амплитуда и фаза или квадратура), а не одно из 16 для 256-QAM или одно из 8 для 64-QAM.

Работа вне помещений

Ряд функций улучшает производительность при работе в уличных условиях. Наиболее важным является новый формат пакета, в котором наиболее чувствительное поле теперь повторяется для надежности. Более длинные защитные интервалы обеспечивают избыточность для корректировки ошибок.

OBSS – перекрывающиеся области радиовидимости

В Wi-Fi сетях каждый клиент и точка доступа прослушивают радиоэфир, декодируя преамбулу пакета, они знают, свободна среда для передачи данных или нет. Если шум в канале при этом превысит порог чувствительности на 20 Дб, среда так же считается занятой.

В стандартах 802.11 введено понятие виртуальной занятости среды (механизм NAV – Network Allocation Vector). В кадре есть поле, которое содержит значение счетчика, при получении кадров оно меняется во времени от некоторого значения до нуля. Если значение кода равно нулю, то канал свободен, иначе – занят.

В версиях Wi-Fi 4 и Wi-Fi 5 определение виртуальной занятости среды не зависит от того, к какой сети принадлежит устройство занявшее среду. Клиент в кадре имеет одно значение NAV. Wi-Fi 6 научился определять, из какой сети ведется передача – из своей собственной или чужой. На основании этих данных устройство может менять значение NAV и подстраивать мощность передатчика, меняя пороги чувствительности.

Преамбула 802.11ax содержит поле «цвет сети» (BSS color), что позволяет быстро определять принадлежность сети без полного декодирования пакета. Значение «цвета» выбирается точкой доступа случайным образом в момент инициализации сети. Длина поля BSS color 6 бит, этого достаточно, что бы помеченные пакеты у двух сетей находящихся в зоне радиовидимости не совпали.

Уменьшенное энергопотребление

Существующие режимы энергосбережения дополнены новыми механизмами, позволяющими увеличить интервалы ожидания и запланированное время пробуждения. Кроме того, для устройств IoT введен режим только для канала с частотой 20 МГц, позволяющий создавать более простые и менее мощные микросхемы, поддерживающие только этот режим. Надежная высокопроизводительная сигнализация для лучшей работы при значительно более низком уровне мощности принимаемого сигнала (RSSI).

Лучшее планирование и более длительное время автономной работы устройства с Target Wake Time (TWT – запланированное время активации). ТД может согласовывать с пользователями использование функции TWT для задания времени доступа к среде путем обмена информацией, которая включает ожидаемую продолжительность активности.

Технология формирования луча (Beamforming) явная и универсальная

Технология явного формирования луча к клиенту (explicit beamforming) решает ряд вопросов, связанных с замиранием и переотражением сигналов, с их не синфазностью. Приходя в разных фазах, сигнал теряет мощность, а это сильно влияет на дальнодействие и скорость передачи данных.

Explicit beamforming требует от клиента возврата диаграммы направленности. Роутер отправляет клиенту сигнальные пакеты со всех своих антенн, клиент в обязательном порядке отсылает назад информацию, что он увидел от этих антенн, роутер вычисляет местоположение клиента, вносит поправки в работу всех своих приемо-передатчиков. Таким образом роутер может устранить замирания, внести поправку в фазовый сдвиг на одной из антенн, увеличить амплитуду сигнала для преодоления препятствия.

Важно знать! Явное формирование луча работает только в случае, если есть 2 передатчика и больше, и есть поддержка на уровне клиента.

Если устройство не поддерживает передачу диаграммы направленности, есть упрощенный вариант алгоритма – implicit beamforming (универсальное формирование луча). В этом случае роутер оценивает канал связи, основываясь на том, каким образом клиент принимает данные. Роутер объявляет данные, на каких скоростях он может работать, а клиент уже отвечает, что он будет работать на такой-то скорости. Путем итераций роутер меняет скорость и фазовый сдвиг, и смотрит, что ответит клиент. Если клиент повысил скорость, принимается решение что все хорошо. Так продолжается до тех пор, пока не будет установлена максимальная скорость со стороны клиента.

Какие проблемы решает технология Beamforming

Это очень ресурсоемкая задача, которая требует серьезных вычислительных мощностей и хорошего охлаждения роутера.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *