за что отвечает шим контроллер на видеокарте
Что такое шим контроллер, как он устроен и работает, виды и схемы
Раньше для питания устройств использовали схему с понижающим (или повышающим, или многообмоточным) трансформатором, диодным мостом, фильтром для сглаживания пульсаций. Для стабилизации использовались линейные схемы на параметрических или интегральных стабилизаторах. Главным недостатком был низкий КПД и большой вес и габариты мощных блоков питания.
Во всех современных бытовых электроприборах используются импульсные блоки питания (ИБП, ИИП – одно и то же). В большинстве таких блоков питания в качестве основного управляющего элемента используют ШИМ-контроллер. В этой статье мы рассмотрим его устройство и назначение.
Содержание статьи
Определение и основные преимущества
ШИМ-контроллер – это устройство, которое содержит в себе ряд схемотехнических решений для управления силовыми ключами. При этом управление происходит на основании информации полученной по цепям обратной связи по току или напряжению – это нужно для стабилизации выходных параметров.
Аббревиатура «ШИМ» расшифровывается, как широтно-импульсная модуляция – это один из методов модуляции сигнала не за счёт величины выходного напряжения, а именно за счёт изменения ширины импульсов. В результате формируется моделируемый сигнал за счёт интегрирования импульсов с помощью C- или LC-цепей, другими словами – за счёт сглаживания.
Вывод: ШИМ-контроллер – устройство, которое управляет ШИМ-сигналом.
Научитесь разрабатывать устройства на базе микроконтроллеров и станьте инженером умных устройств с нуля: Инженер умных устройств
Основные характеристики
Для ШИМ-сигнала можно выделить две основных характеристики:
1. Частота импульсов – от этого зависит рабочая частота преобразователя. Типовыми являются частоты выше 20 кГц, фактически 40-100 кГц.
2. Коэффициент заполнения и скважность. Это две смежных величины характеризующие одно и то же. Коэффициент заполнения может обозначаться буквой S, а скважность D.
где T – это период сигнала,
Коэффициент заполнения – часть времени от периода, когда на выходе контроллера формируется управляющий сигнал, всегда меньше 1. Скважность всегда больше 1. При частоте 100 кГц период сигнала равен 10 мкс, а ключ открыт в течении 2.5 мкс, то коэффициент заполнения – 0.25, в процентах – 25%, а скважность равна 4.
Также важно учитывать внутреннюю конструкцию и предназначение по количеству управляемых ключей.
Отличия от линейных схем потери
Как уже было сказано, преимуществом перед линейными схемами у импульсных источников питания является высокий КПД (больше 80, а в настоящее время и 90%). Это обусловлено следующим:
Допустим сглаженное напряжение после диодного моста равно 15В, ток нагрузки 1А. Вам нужно получить стабилизированное питание напряжением 12В. Фактически линейный стабилизатор представляет собой сопротивление, которое изменяет свою величину в зависимости от величины входного напряжения для получения номинального выходного – с небольшими отклонениями (доли вольт) при изменениях входного (единицы и десятки вольт).
На резисторах, как известно, при протекании через них электрического тока выделяется тепловая энергия. На линейных стабилизаторах происходит такой же процесс. Выделенная мощность будет равна:
Так как в рассмотренном примере ток нагрузки 1А, входное напряжение 15В, а выходное – 12В, то рассчитаем потери и КПД линейного стабилизатора (КРЕНка или типа L7812):
Pпотерь=(15В-12В)*1А = 3В*1А = 3Вт
Если же входное напряжение вырастит до 20В, например, то КПД снизится:
Основной особенностью ШИМ является то, что силовой элемент, пусть это будет MOSFET, либо открыт полностью, либо полностью закрыт и ток через него не протекает. Поэтому потери КПД обусловлены только потерями проводимости
И потерями переключения. Это тема для отдельной статьи, поэтому не будем останавливаться на этом вопросе. Также потери блока питания возникают в выпрямительных диодах (входных и выходных, если блок питания сетевой), а также на проводниках, пассивных элементах фильтра и прочем.
Общая структура
Рассмотрим общую структуру абстрактного ШИМ-контроллер. Я употребил слово «абстрактного» потому что, в общем, все они похожи, но их функционал все же может отличаться в определенных пределах, соответственно будет отличаться структура и выводы.
Внутри ШИМ-контроллера, как и в любой другой ИМС находится полупроводниковый кристалл, на котором расположена сложная схема. В состав контроллера входят следующие функциональные узлы:
1. Генератор импульсов.
2. Источник опорного напряжения. (ИОН)
3. Цепи для обработки сигнала обратной связи (ОС): усилитель ошибки, компаратор.
4. Генератор импульсов управляет встроенными транзисторами, которые предназначены для управления силовым ключом или ключами.
От типа ключа также зависит выбор ШИМ-контроллера. Для управления биполярным транзистором основным требованием является, чтобы выходной ток управления ШИМ-контроллера не был ниже, чем ток транзистора деленный на H21э, чтобы его включать и отключать достаточно просто подавать импульсы на базу. В этом случае подойдет большинство контроллеров.
Если говорить обобщенно, то ШИМ-контроллер можно представить в виде компаратора, на один вход которого подан сигнал с цепи обратной связи (ОС), а на второй вход пилообразный изменяющийся сигнал. Когда пилообразный сигнал достигает и превышает по величине сигнал ОС, то на выходе компаратора возникает импульс.
При изменениях сигналов на входах ширина импульсов меняется. Допустим, что вы подключили мощный потребитель к блоку питания, и на его выходе напряжение просело, тогда напряжение ОС также упадет. Тогда в большей части периода будет наблюдаться превышение пилообразного сигнала над сигналом ОС, и ширина импульсов увеличится. Всё вышесказанное в определенной мере отражено на графиках.
Рабочая частота генератора устанавливается с помощью частотозадающей RC-цепи.
Функциональная схема ШИМ-контроллера на примере TL494, мы рассмотрим его позже подробнее. Назначение выводов и отдельных узлов описано в следующем подзаголовке.
Назначение выводов
Поэтому рассмотрим типовые названия выводов и их назначение:
GND – общий вывод соединяется с минусом схемы или с землей.
Uc (Vc) – питание микросхемы.
Ucc (Vss, Vcc) – Вывод для контроля питания. Если питание проседает, то возникает вероятность того, что силовые ключи не будут полностью открываться, а из-за этого начнут греться и сгорят. Вывод нужен чтобы отключить контроллер в подобной ситуации.
Vref – опорное напряжения, обычно соединяется с землей через небольшой конденсатор (единицы микрофарад).
ILIM – сигнал с датчика тока. Нужен для ограничения выходного тока. Соединяется с цепями обратной связи.
ILIMREF – на ней устанавливается напряжение срабатывания ножки ILIM
SS – формируется сигнал для мягкого старта контроллера. Предназначен для плавного выхода на номинальный режим. Между ней и общим проводом для обеспечения плавного пуска устанавливают конденсатор.
RtCt – выводы для подключения времязадающей RC-цепи, которая определяет частоту ШИМ-сигнала.
CLOCK – тактовые импульсы для синхронизации нескольких ШИМ-контроллеров между собой тогда RC-цепь подключается только к ведущему контроллеру, а RT ведомых с Vref, CT ведомых соединяюся с общим.
EAOUT или Error Amplifier Output рус. Выход усилителя ошибки. Не смотря на то, что есть входы усилителя ошибки и с их помощью, в принципе можно регулировать выходные параметры, но контроллер довольно медленно на это реагирует. В результате медленной реакции может возникнуть возбуждение схемы, и она выйдет из строя. Поэтому с этого вывода через частотозависимые цепи подают сигналы на INV. Это еще называется частотной коррекцией усилителя ошибки.
Примеры реальных устройств
Для закрепления информации давайте рассмотрим несколько примеров типовых ШИМ-контроллеров и их схем включения. Мы будем делать это на примере двух микросхем:
TL494 (её аналоги: KA7500B, КР1114ЕУ4, Sharp IR3M02, UA494, Fujitsu MB3759);
Они активно используются в блоках питания для компьютеров. Кстати, эти блоки питания обладают немалой мощностью (100 Вт и больше по 12В шине). Часто используются в качестве донора для переделки под лабораторный блок питания или универсальное мощное зарядное устройство, например для автомобильных аккумуляторов.
TL494 – обзор
Начнем с 494-й микросхемы. Её технические характеристики:
В этом конкретном примере можно видеть большинство описанных выше выводов:
1. Неинвертирующий вход первого компаратора ошибки
2. Инвертирующий вход первого компаратора ошибки
3. Вход обратной связи
4. Вход регулировки мертвого времени
5. Вывод для подключения внешнего времязадающего конденсатора
6. Вывод для подключения времязадающего резистора
7. Общий вывод микросхемы, минус питания
8. Вывод коллектора первого выходного транзистора
9. Вывод эмиттера первого выходного транзистора
10. Вывод эмиттера второго выходного транзистора
11. Вывод коллектора второго выходного транзистора
12. Вход подачи питающего напряжения
13. Вход выбора однотактного или же двухтактного режима работы микросхемы
14. Вывод встроенного источника опорного напряжения 5 вольт
15. Инвертирующий вход второго компаратора ошибки
16. Неинвертирующий вход второго компаратора ошибки
На рисунке ниже изображен пример компьютерного блока питания на этой микросхеме.
Другой популярной ШИМ является микросхема 3843 – на ней также строятся компьютерные и не только блоки питания. Её цоколевка расположена ниже, как вы можете наблюдать, у неё всего 8 выводов, но функции она выполняет те же, что и предыдущая ИМС.
Бывает UC3843 и в 14-ногом корпусе, но встречаются гораздо реже. Обратите внимание на маркировку – дополнительные выводы либо дублируются, либо незадействованы (NC).
Расшифруем назначением выводов:
1. Вход компаратора (усилителя ошибки).
2. Вход напряжения обратной связи. Это напряжение сравнивается с опорным внутри ИМС.
3. Датчик тока. Подключается к резистору стоящему в между силовым транзистором и общим проводом. Нужен для защиты от перегрузок.
4. Времязадающая RC-цепь. С её помощью задаётся рабочая частота ИМС.
6. Выход. Управляющее напряжение. Подключается к затвору транзистора, здесь двухтактный выходной каскад для управления однотактным преобразователем (одним транзистором), что можно наблюдать на рисунке ниже.
7. Напряжение питания микросхемы.
8. Выход источника опорного напряжения (5В, 50 мА).
Её внутренняя структура.
Можно убедится, что во многом похожа и на другие ШИМ-контроллеры.
Простая схема сетевого источника питания на UC3842
Явно полезное:
ШИМ со встроенным силовым ключем
ШИМ-контроллеры со встроенным силовым ключем используются как в трансформаторных импульсных блоках питания, так и в бестрансформаторных DC-DC преобразователях понижающего (Buck), повышающего (Boost) и понижающее-повышающего (Buck-Boost) типов.
Пожалуй, одним из наиболее удачных примеров будет распространенная микросхема LM2596, на базе которого на рынке можно найти массу таких преобразователей, как изображен ниже.
Такая микросхема содержит в себе все вышеописанные технические решения, а также вместо выходного каскада на маломощных ключах в ней встроен силовой ключ, способный выдержать ток до 3А. Ниже изображена внутренняя структура такого преобразователя.
Можно убедиться, что в сущности особых отличий от рассмотренных в ней нет.
А вот пример трансформаторного блока питания для светодиодной ленты на подобном контроллере, как видите силового ключа нет, а только микросхема 5L0380R с четырьмя выводами. Отсюда следует, что в определенных задачах сложная схемотехника и гибкость TL494 просто не нужна. Это справедливо для маломощных блоков питания, где нет особых требований к шумам и помехам, а выходные пульсации можно погасить LC-фильтром. Это блок питания для светодиодных лент, ноутбуков, DVD-плееров и прочее.
Заключение
В начале статьи было сказано о том, что ШИМ-контроллер это устройство которое моделирует среднее значение напряжения за счет изменения ширина импульсов на основании сигнала с цепи обратной связи. Отмечу, что названия и классификация у каждого автора часто отличается, иногда ШИМ-контроллером называют простой ШИМ-регулятор напряжения, а описанное в этой статьей семейство электронных микросхем называют «Интегральная подсистема для импульсных стабилизированных преобразователей». От названия суть не меняется, но возникают споры и недопонимания.
Об использовании DC-DC преобразователей International Rectifier в цепях питания видеокарт
При ремонте видеокарт практически невозможно найти их электрических схем и мануалов по ремонту. Наиболее часто у видеокарт выходят из строя элементы фаз питания. В данной статье приводится некоторая информация относительно схем питания видеокарт AMD Radeon и Nvidia GeForce.
В видеокартах AMD Radeon для питания ядра графического процессора (VDDC, VCore of the GPU) обычно используется несколько фаз питания, управляющихся ШИМ-контроллером (обычно производства International Rectifier).
Часто используемыми элементами в силовых цепях видеокарт AMD Radeon является DC-DC преобразователи напряжения фирмы International Rectifier семейства PowIRstages. Обычно это микросхемы IR3550, IR3551, IR3553, IR3556 и другие подобные чипы. Они управляются ШИМ-контроллерами IR3521, IR3567B и т.д. В цепях питания также часто используются драйвера CHL8510 с силовыми полевыми транзисторами и другими деталями.
Типовая фаза питания GPU включает в себя схему управления (например, IR3567B), преобразователь постоянного тока (например, IR3550), драйвер (например, CHL8510), и/или MOSFET-ы, другие элементы.
Интеграция в одном корпусе множества компонентов позволяет уменьшить общее количество электронных элементов и размеры печатной платы видеокарты, а также увеличить надежность ее работы.
Интеграция нескольких компонентов (драйвер и полевые транзисторы верхнего и нижнего плечей) в одном корпусе DC-DC преобразователя IR:
Преобразователи напряжения IR являются практически готовыми силовыми каскадами для понижающих преобразователей постоянного тока на токи порядка 40-60 ампер.
DC-DC преобразователи IR оптимизированы для применения в многофазных преобразователях силовых цепей питания видеокарт, а также материнских платах, коммуникационных системах, серверах и прочих устройствах.
Типовое включение DC-DC преобразователей IR
В качестве примера использования DC-DC buck-преобразователей IR рассмотрим использование микросхем IR3551.
IR3551 обеспечивает выходные напряжения в диапазоне от 0,25 до 2,5 вольт (до 5,5 V при включении без внутреннего Current Sense Amplifier) током до 50 ампер. Рабочая частота импульсов – до 1 Мгц. Эффективность работы — до 94,5% при напряжении 1,2 вольта. Наилучший КПД при эксплуатации с выходным током порядка 10-20 ампер.
Блок-схема функциональных элементов IR3551:
Назначение выводов IR3551:
Распиновка микросхемы IR3551 (вид сверху):
Внутренности микросхемы IR3550 семейства PowIRstage:
Типовая схема включения микросхемы IR3551 при использовании внутреннего усилителя тока (Current Sense Amplifier):
Примеры использования DC-DC преобразователей IR в цепях питания видеокарт
На печатных платах видеокарт обычно можно легко распознать функциональное предназначение ее узлов. Большие токи, потребляемые видеопроцессором, требуют использования нескольких фаз питания, которые легко идентифицируются на плате благодаря наличию нескольких одинаковых компонентов в одном месте платы.
Расположение компонентов подсистемы питания видеокарты Radeon Vega Frontier Edition (лицевая часть платы):
Расположение компонентов подсистемы питания GPU Radeon Vega Frontier Edition (задняя часть платы):
Фазы питания видеокарты AMD Radeon RX 480 на DC-DC преобразователях IR семейства PowIRstages:
Шесть фаз питания на чипах IR3551 у видеокарт AMD Radeon R9 290 производства VisionTek:
Преобразователь IR3551 на плате видеокарты Radeon R9 290 производства VisionTek на фазе питания VDDCI:
Для управления преобразователями постоянного тока нужны ШИМ-контроллеры. Для них часто используют микросхемы IR3567B производства компании International Rectifier. Они имеют сдвоенный выход на 6+2 фаз, чего вполне достаточно для видеокарт уровня Radeon R9 Fury, RX480/580 и других.
ШИМ-контроллер IR3567B на плате Radeon R9 Fury производства компании Sapphire:
Здесь каждая фаза использует по одному силовому полевому транзистору IR6894 и IR6811 в корпусе DirectFET вместе с чипами управления затворами CHL8510, расположенными на обратной стороне платы:
У Radeon R9 290 производства VisionTek также используется ШИМ-контроллер IR3567B, при этом со второго выхода используется только одна фаза для формирования слаботокового напряжения VDDCI (питание шины между GPU и памятью):
В мощных видеокартах шести фаз, управляемых ШИМ-контроллером IR3567B для GPU недостаточно. Поэтому конструкторам приходится прибегать к ухищрениям – удвоению ШИМ.
Например, у видеокарт MSI GeForce GTX 1080 Ti с 14 фазами питания GPU и 3 фазами для памяти используют контроллер ШИМ IR3595A (6+2 фазы) вместе с удвоителями PWM IR3599. Кроме того, на этой ВК применяют микросхемы ШИМ IR3570 для управления Ubiq QM3816N6 с двойным MOSFET через драйвера CHL8510:
Питание памяти видеокарт может организовываться с помощью ШИМ со сдвоенными выходами для GPU и Memory VRM, либо отдельно для этих частей видеокарты.
У видеокарт Radeon RX480 для питания чипами памяти используется шина 3,3 вольта от слота PCI-E.
На Radeon R9 290 производства VisionTek оно организовано с помощью одной отдельной фазы, контролируемой аналоговым ШИМ-контроллером APW8722 с четырьмя МОП-транзисторами (два MOSFET NTMFS4983 – нижнее плечо плюс два NTMFS4C08 – верхнее плечо).
Аналоговый ШИМ-контроллер APW8722 на нереференсной плате Radeon R9 290 (VisionTek):
Полевые транзисторы NTMFS4983 (нижнее плечо) и NTMFS4C08 (верхнее плечо) фазы питания видеопамяти у Radeon R9 290 производства VisionTek:
Линейный регулятор APL5930 для контроля напряжения 0,95 вольт на Radeon R9 290 производства VisionTek:
Чип управления затвором (драйвер) CHL8510 производстваInternational Rectifier, а также FDMC8200 фирмы Fairchild Semiconductor (внутри сдвоенные N-Channel MOSFET-ы для питания VRM) у Radeon R9 290 производства VisionTek:
Похожая схема питания ядра GPU используется у Radeon RX480: в каждой фазе по 2 одноканальных N-МОП-транзистора (MDU1514 (напряжение 30 В, ток 66,3 А, 6 мОм) – на фото ниже справа, и MDU1511 (30 В, ток до 100 А, 2,4 мОм) – на фото ниже слева). Транзисторы управляются чипами управления затвором CHL8510 (на каждый транзистор по одному драйверу):
Драйвера CHL8510 (gate driver) используются в видеокартах AMD и Nvidia уже много лет.
Подсистема питания GeForce GTX 570 (2010 год) с 4 фазами питания на транзисторах RJK0389DPA и RJK0392DPA с драйверами CHL8510:
У видеокарт R9 280/280X производства PowerColor все фазы питания ГПУ, а также фаза питания памяти работают на чипах CHL8228G.
ШИМ-контроллер – что за зверь такой?
В далекие, теперь уже времена прошлого века, в блоках питания для понижения или повышения напряжения применялись линейные трансформаторы. Диодный мост и электролитический конденсатор сглаживал пульсацию. Далее напряжение стабилизировалось линейными или интегральными стабилизаторами. Вес таких источников питания был достаточно большой, ничуть не меньше были и габариты. Чем большая мощность требовалась от БП, тем в несколько раз был объемнее и тяжелее сам блок питания.
Если заглянуть в современную бытовую технику, то сейчас вы увидите импульсный источник питания, или блок питания – сокращенно ИБП. В таких модулях питания используется в качестве управления специальная микросхема-контроллер Широтно-импульсной модуляции, или сокращенно ШИМ. Здесь мы и поговорим об устройстве и назначении этого элемента.
Преимущества и определения ШИМ-контроллера
ШИМ-контроллер это совокупность нескольких функциональных схем для того чтобы управлять выходными силовыми каскадами, собранными обычно на транзисторах. Управляются они исходя из той информации, которую микросхема ШИМ получает от выходных цепей. В зависимости от тока или выходного напряжения на выходе блока питания ШИМ-контроллер регулирует время открытия ключевого транзистора. Таким образом, получается замкнутый круг. Эта часть блока питания называется обратная связь или ОС.
В литературе и интернет источниках можно встретить случаи, когда ШИМ-контроллерами называют различные генераторы сигналов с регулировкой широты импульса, НО без обратной связи! К таким генераторам (на NE555 и др.) не совсем корректно применять понятие контроллер, скорее регулятор или генератор.
Широтно-импульсная модуляция – это тот метод, когда сигнал модулируется не с помощью изменения амплитуды или частоты, а с помощью длительности импульса. Далее, после интеграции импульсов при помощи LC-фильтров происходит сглаживание модулированного сигнала.
Характеристики ШИМ.
Для Широтно-модулированного сигнала характеристик всего две:
F – Частота сигнала
Таким образом, коэффициент заполнения ничто иное как интервал от периода сигнала. Отсюда следует что он (коэффициент заполнения) всегда будет меньше единицы, что не скажешь о скважности – она всегда будет больше 1.
Возьмем пример:
Частота сигнала = 50 кГц.
Период сигнала = 20 мкс.
Теперь предположим, что ключ выхода ШИМ открывается на 4 мкс. Коэффициент заполнение составит минус 20%, а скважность будет равна 5.
Конечно же, в расчет необходимо брать конструкцию ШИМ, исходя из количества силовых ключей.
Отличительные особенности импульсных и линейных БП.
Существенным преимуществом импульсных источников питания перед линейными является хороший КПД (около 90%)
Структура ШИМ
Давайте рассмотрим структуру любого ШИМ-контроллера. Хоть в своем огромном семействе разные ШИМ-ы и обладают дополнительными функциональными особенностями, но все же они все похожи.
Заглянув в микросхему, мы увидим полупроводниковый кристалл, в котором находятся следующие функциональные составляющие:
Количество этих ключей, зависит от предназначения самого ШИМ-контроллера. Например, простые обратноходовые схемы построены на 1-м силовом ключе, полу мостовые на 2-х, а мостовые преобразователи на 4-х ключах.
Выбирая ШИМ-контроллер необходимо исходит из того какой ключ используется. Например, если в блоке питания в качестве выходного каскада стоит биполярный транзистор, то подойдет большая часть контроллеров. Связано это с тем, что управлять таким силовым ключом достаточно просто – подавая импульсы на базу транзистора, мы открываем и закрываем его.
А вот если мы будем использовать полевые транзисторы с изолированным затвором (MOSFET) или IGBT транзисторы, то здесь уже немного сложнее. Выходной транзистор-ключ мало того что нужно открыть – путем заряда затвора, так нам его еще надо и закрыть, естественно разряжая затвор ключа. Для таких схем используются соответствующие ШИМ-контроллеры. У них на выходе стоит 2 транзистора – один заряжает затвор ключа, а другой разряжает, замыкая его на землю.
На заметку:
Многие ШИМ-контроллеры совмещаются с силовыми ключами в один корпус. Если этот контроллер для маломощного блока питания, то выходные транзисторы устанавливаются прямо в микросхему контроллера.
В случае же если блок питания достаточно мощный, то интеграция происходит в обратную сторону – микросхема ШИМ-контроллер устанавливается в корпус силового ключа. Такую микросхему легко установить на радиатор. Соответственно количество выводов у такой микросхемы не как у транзистора.
Грубо говоря, ШИМ-контроллер представляет собой компаратор, на один из входов которого приходит сигнал обратной связи, на другой пилообразный сигнал генератора. Когда первый по амплитуде превышает второй, на выходе формируется импульс.
Тем самым ширина импульса на выходе зависит от соотношения входных сигналов. Предположим, что мы подключили более мощную нагрузку к выходу БП, и напряжение дало просадку. На обратной связи будет тоже падение. Что же произойдет?
В периоде сигнала начнет преобладать пилообразный сигнал, длительность импульсов на выходе увеличится и напряжение компенсируется. Происходит это все в доли секунды.
Частота работы генератора ШИМ-а задается RC-цепью
Пример использования ШИМ-контроллера на базе TL494 – довольно распространённой микросхемы. Далее рассмотрим назначение отдельных выводов этой микросхемы.
Давайте разберем назначение и название этих выводов:
Для того чтобы закрепить сказанное выше рассмотрим пару примеров использования ШИМ-контроллеров, а так же их схем включения. Сделаем это на примере микросхем:
Эти микросхемы часто используются в различных блоках питания, в том числе и компьютерных. Когда дело доходит до переделки компьютерного блока питания в лабораторный бп или зарядное устройство для аккумулятора, то, как раз стараются подобрать бп на TL494.
Обзор ШИМ TL494
Технические характеристики ШИМ-контроллера TL494
Ниже на рисунке дана распиновка TL494:
Обзор микросхемы UC3843
Еще одна популярная микросхема используемая в качестве ШИМ-контроллеров компьютерных и не только блоков питания – это микросхема 3843. распиновка её находится ниже. Как видно, у нее 8 выводов, но функции такие же как у TL949. Можно встретить эту микросхему в 14-выводном корпусе и часть выводов у неё (NC) – то есть не используется.
Рассмотрим назначение выводов:
Структура микросхемы UC3843
Можно заметить, что и эта микросхема тоже похожа на все остальные ШИМ-контроллеры.
Простой блок питания на UC3842
Микросхема ШИМ с силовым ключом в одном корпусе
Подобные ШИМ-контроллеры используются как в импульсных блоках питания на базе импульсного трансформатора, так и в DC-DC понижающих или повышающих преобразователях.
Можно привести в пример одну из самых распространенных микросхем в этом сегменте – LM2596. На её базе можно найти большое количество схем преобразователей, в том числе и изображенная ниже.
LM2596 включает в себя все технические решения, описанные выше, плюс в неё еще интегрирован силовой ключ на ток до 3 Ампер.
Структура микросхемы LM2596
Как можно увидеть больших отличий от микросхем, которые мы рассматривали ранее в ней нет.
Еще один пример блока питания для светодиодных лент на ШИМ-контроллере 5L0380R – У неё всего 4 вывода. Как можно заметить в схеме отсутствует силовой ключ. Естественно он в микросхеме, а сама микросхема выполнена в корпусе транзистора и крепится на радиатор.
Изучая ШИМ-контроллеры можно сделать несколько выводов: Если мы имеем дело с мощным источником питания и нам необходима достаточная гибкость использования этого контроллера, то такая микросхема как TL494 (и подобные) подходит для таких задач лучше. А если блок питания средней и невысокой мощности, то вполне свою роль выполнят ШИМ-контроллеры с интегрированными в них силовыми ключами. В таких бп нет больших требований к пульсациям и помехам, а выходные цепи можно сгладить фильтрами. Обычно это блоки питания для бытовой техники, светодиодных лент, ноутбуков, зарядных адаптеров.
И напоследок.
Ранее мы уже говорили о том, что ШИМ-контроллер это механизм, который на базе сформированных импульсов за счет изменения ширины импульсов формирует среднее значение напряжения управляемое с цепей обратной связи. Хочу заметить, что классификация и название у каждого автора могут быть абсолютно разными. ШИМ-контроллером могут называть простой регулятор напряжения. В то же время сам ШИМ-контроллер в блоке питания может быть назван – “блокинг-генератор”, “интегральный субмодуль”, “задающий генератор” От того как его назвал тот или иной автор суть не меняется, но могут возникнуть непонимания и разночтения.