скорость звука в секунду метров чему равна

Скорость звука и число М

Для начала давайте выясним, сверхзвук — это сколько км/ч? Какова должна быть скорость, чтобы считаться сверхзвуковой? Проблема в том, что простого и однозначного ответа на этот вопрос… Просто нет.

Есть правильный ответ — больше 1 М. Или Число Маха равное единице, это скорость звука, а выше единицы, это уже сверхзвук.

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

Совсем не привычное нам число, выраженное в километрах в час. Если упростить, то объяснить можно так: скорость звука зависит о свойств среды в которой он распространяется, чем плотнее среда, тем быстрее распространяются колебания (звук это ведь волна). Таким образом на разной высоте скорость звука разная. Чем выше, тем меньше плотность воздуха и тем ниже будет местная скорость звука.

Что такое скорость звука

Скорость звука в километрах в час не выражается, просто потому, что в таком случае она всегда будет разной.

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

Зависимость скорости звука от высоты полета

Например, скорость звука у земли (на высоте 0 км) составит 340 метров в секунду (м/с), это 1224 км/ч. И тут важно сказать что такое значение будет: при температуре +15 и давлении 750 мм. рт. ст. и относительной влажности 0%. То есть, при «стандартных» условиях.

А вот на высоте 10 000 метров, на которой летают современные пассажирские лайнеры, это уже около 299 м/с (это 1076 км/ч), то есть разница довольно значительная — 12%.

Также от высоты полета и других параметров атмосферы зависит и скорость звука, и сопротивление воздуха и, соответственно, скорость самолета, которую он может развить.

Скорость звука на высоте 11 километров и выше почти не будет меняться, эта часть атмосферы называется «тропопауза».

То же самое в виде таблицы

Зависимость скорости звука от высоты*

Высота, мСкорость звука, м/сСкорость звука, км/ч
-1000344,11 238,8
0340,31 225,1
1000336,41 211,0
2000332,51 197,0
3000328,61 183,0
4000324,61 168,6
5000320,61 154,2
6000316,51 139,4
7000312,31 124,3
8000308,11 109,2
9000303,91 094,0
10000299,61 078,6
11000295,21 062,7
12000295,11 062,4
13000295,11 062,4
14000295,11 062,4

*Минутка занудства. Нужно напомнить, что на самом деле скорости звука от высоты зависит условно, это упрощение. Скорость звука зависит от плотности атмосферы, а плотность воздуха, в свою очередь, зависит от температуры, влажности и давления, которые меняются с высотой.

Зачем нужно число Маха

Так вот, число Маха в авиации представляет собой отношение скорости летательного аппарата к скорости звука на той высоте на которой он сейчас летит. Так удобнее, ведь на разной высоте скорость звука будет разной и чтобы понимать достигает ли самолет скорости звука, его скорость измеряют в числах М.

Один мах, это просто — 1 мах, а не «км/ч». Нельзя просто ответить на вопрос «сколько 1 мах в километрах в час», нужно всегда уточнять, о какой высоте идет речь.

Если еще проще, число М показывает сколько скоростей звука в скорости самолета сейчас на конкретной высоте (при определенных условиях среды). Если число Маха больше единицы, очевидно, мы имеем дело со сверхзвуковой скоростью. Поэтому чаще всего вы будете встречать пояснение для какой высоты указано конкретное число Маха.

Например, для Боинга 777 крейсерской скоростью считается 0,84 М (это дозвуковой летательный аппарат). То есть на высоте 10 000 метров при стандартных условиях, принимая скорость звука за 1076 км/ч умножаем ее на 0,84 и получаем — 904 км/ч. По документации крейсерская скорость Boeing 777 составляет как раз 905 км/ч.

Что касается сверхзвуковых летательных аппаратов, то, по определению, их скорости должны быть больше скорости звука, то есть больше 1 М. Например у Су-27 это 2,35 М, что примерно 2 528 км/ч на высоте 10 км (скорость звука 295 м/с, а это 1062 км/ч).

Число М некоторых сверхзвуковых самолетов:

А вот гиперзвуковые летательные аппараты:

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

SR-71 — самый быстрый серийный самолет

Еще одно замечание, число Маха в авиации, это качественная величина, а не количественная. То есть это не скорость в чистом виде, а критерий который показывает насколько скорость объекта выше скорости звука. Зачем? Затем, что дозвуковые, трансзвуковые, сверхзвуковые или гиперзвуковые скорости очень сильно отличаются по сути.

Пилоту (и инженеру тоже) важно знать какой у него сейчас режим обтекания самолета (дозвуковой, трансзвуковой или сверхзвуковой). Например, во многих указателях скорости есть отдельный циферблат, показывающий значение числа Маха в дополнению к приборной скорости.

На картинке в начале этого повествования изображен трансзвуковой режим. Это значит, что сам самолет еще не превысил скорость звука, а на некоторых его участках (на фото это очень хорошо видно по белым «клиньям») скорость обтекания уже достигла скорости звука.

Поэтому и образовались скачки уплотнения которые хорошо видны благодаря образованию конденсата позади них. Вот почему, число Маха так важно.

Источник

Скорость звука

Из Википедии — свободной энциклопедии

Скорость звука в различных средах [1]

0 °C, 101325 Пам/скм/ч
Азот3341202,4
Аммиак4151494,0
Ацетилен3271177,2
Водород12844622,4
Воздух3311191,6
Гелий9653474,0
Кислород3161137,6
Метан4301548,0
Угарный газ3381216,8
Неон4351566,0
Углекислый газ259932,4
Хлор206741,6
Жидкости
Вода14035050,8
Ртуть13834978,0
Твёрдые тела
Алмаз1200043200,0
Железо595021420,0
Золото324011664,0
Литий600021600,0
Стекло480017280,0

Скорость звука — скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах).

Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях — меньше, чем в твёрдых телах. Также в газах скорость звука зависит от температуры данного вещества, в монокристаллах — от направления распространения волны.

Обычно не зависит от частоты волны и её амплитуды; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.

Источник

Скорость звука: каков ее предел?

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

Одна из основных задач какой-либо точной науки заключается в измерении и объяснении тех или иных процессов, а также их участников. За многие годы исследований, расчетов и споров научное сообщество пришло к пониманию того, что существуют определенные ограничения в некоторых явлениях. К примеру, скорость света в вакууме равна 299 792 458 м/с. Согласно специальной теории относительности, ничто не может двигаться быстрее. Другими словами, мы имеем верхний скоростной лимит для света. Однако такой лимит для скорости звука пока не был установлен. Ученые из Лондонского университета королевы Марии (Англия, Великобритания) провели расчеты, результатом которых стало открытие верхнего предела скорости звука. Что стало основой расчетов, каковы их результаты, и в каких областях можно применить новообретенные знания? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования

Звук это волны механических колебаний в какой-либо среде. Скорость распространения этих волн напрямую зависит от самой среды. К примеру, в твердых объектах звук распространяется быстрее, чем в воздухе. Однако и тут могут быть флуктуации в измерениях, поскольку важна не только среда как таковая, но и ее состояние (температура, давление и т.д.).

Логично, что скорость звука сложно назвать константой, так как в разных условиях она будет своя: в воздухе это 331 м/с, в воде 1500 м/с (тут будут вариации в зависимости от температуры, давления и солености воды), а в стекле 4800 м/с.

Но как же рассчитать верхний лимит скорости звука?

Как напоминают нам ученые, некоторые важные свойства конденсированных фаз* определяются фундаментальными физическими константами.

Конденсированные фазы* — состояние вещества, когда число его компонентов (атомов, молекул и т.д.) крайне велико, а взаимодействия между компонентами очень сильны. К числу таких фаз можно отнести и твердые вещества, и жидкости.

Постоянная Ридберга* — предельное значение наивысшего волнового числа любого фотона, который может быть испущен атомом водорода. Также эта постоянная определяет волновое число фотона с наименьшей энергией, способного ионизировать атом водорода в его основном состоянии.

Постоянная тонкой структуры* (⍺) — фундаментальная физическая постоянная, которая характеризует силу электромагнитного взаимодействия. Эта постоянная определяет размер крайне малого изменения величины энергетических уровней атома и образования тонкой структуры, которые являются набором узких и близких частот в его спектральных линиях.

Отношение массы протона к массе электрона* (mp/me — константа, равная 1836,15267261.

Объединение этих констант позволяет определить новую безразмерную константу, описывающую верхнюю границу скорости звука (vu) в конденсированных фазах (формула №1):
скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна
где c — скорость света в вакууме, ⍺ — постоянная тонкой структуры, mp/me — отношение масс протона и электрона, vu — верхний предел скорости звука.

Подтверждение верности данной формулы было получено благодаря многочисленным экспериментам и моделированию атомарного водорода.

Результаты исследования

Авторы сего труда отмечают, что существует два подхода к определению v (скорости звука). Один поход начинается с оценки упругости системы, а второй — с оценки ее вибрационных свойств. Оба подхода дают сопоставимые результаты (приготовьтесь, формул будет немало).

Используя E = ER из формулы №3 в формуле №2 мы получим (формула №4):
скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна
где ⍺ = (1/4πϵ0)(e 2 /hc) — постоянная тонкой структуры.

Такой же результат, как и в формуле №4, можно получить и посредством второго подхода, где основной акцент поставлен на рассмотрении вибрационных свойств системы.

Далее выбранный подход был проверен на более практическом уровне.

me характеризует электроны, которые отвечают за взаимодействия между атомами. Электронный вклад далее отражается в коэффициенте ⍺c (⍺c ∝ e 2 /h), который представляет собой скорость электронов в модели Бора. Ученые отмечают, что ⍺с и v не зависят от c. Использование формулировки v в виде ⍺с в формуле №4 обусловлено двумя факторами.

Во-первых, так намного удобнее и информативнее представлять границу в отношении vu/c, что обычно применяется в отношении скорости Ферми и скорости света (vF/c).

Во-вторых, именно ⍺ (наряду с mp/me) имеет фундаментальное для стабильности протонов и обеспечения синтеза тяжелых элементов и, следовательно, существования твердых тел и жидкостей, в которых звук может распространяться.

m формула №4 характеризует атомы, участвующие в распространении звука. Его масштаб задается массой протона mp: m = Amp, где A — атомная масса. Учитывая, что А = 1, а m = mp, применение формулы №4 позволяет определить значение верхней границы скорости звука (формула №9):
скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна
Таким образом было показано, что vu зависит только от фундаментальных физических констант, включая безразмерную постоянную тонкой структуры и отношение масс протона и электрона.

Вышеуказанная формула является расширенным вариантом формулы №4 для атомарного водорода. Объединение формул №4 и №9, при учете m = Amp, позволяет получить (формула №10):
скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна
Что ж, теперь можно немного отдохнуть от формул и приступить к обсуждению расчетов и экспериментов.

Ученые отмечают, что хоть скорость звука определяется модулями упругости и плотностью, они существенно отличаются в зависимости от типа связи: сильные ковалентная, ионная или металлическая связи, обычно дающей большую энергию связи, промежуточные водородные связи, а также слабые дипольные и ван-дер-ваальсовые взаимодействиям. Модули упругости и плотность также меняются в зависимости от конкретной конструкции, которую принимает система. Кроме того, тип связи и структура сами по себе взаимозависимы: ковалентная связь приводят к образованию открытых структур, а ионная — плотноупакованных. Следовательно, скорость звука для конкретной системы не может быть предсказана аналитически и без явного знания структуры и взаимодействий внутри нее, подобно другим системно-зависимым свойствам, таким как вязкость или теплопроводность.

Тем не менее зависимость v от m или A может быть изучена в семействе элементарных твердых тел. Элементарные твердые вещества не имеют смешанных особенностей, существующих в соединениях из-за смешанной связи между разными атомными разновидностями (включая смешанную ковалентно-ионную связь между одними и теми же парами атомов, а также разные типы связи между разными парами).

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна
Изображение №1

Коэффициент корреляции Пирсона* используется для изучения связи двух переменных, измеренных в метрических шкалах на одной и той же выборке.

Расчетные и экспериментальные значения vu, показанные на графике прямой и пунктирной линиями, указывают на пересечение в точке 37.350 м/с, что подтверждает верность расчетных походов и, особенно, верность аппроксимации коэффициент в формуле №4, что дает хорошее согласование с экспериментальными данными.

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна
Изображение №2

Далее было решено проверить согласование расчетных данных с экспериментальными с применением более широкого спектра образцов (133 образца). Экспериментальные значения v были меньше, чем верхняя теоретическая граница vu в формуле №9. vu примерно вдвое больше v в алмазе, это является самой высокой скоростью звука, измеренной в условиях окружающей среды.

Формула №10 может использоваться для приблизительного прогнозирования средней или характеристической скорости звука (v). A1/2, которая, согласно формуле №10, относится к скорости звука, варьируется по периодической таблице в диапазоне от 1 до 15 со средним значением 8. Согласно расчетам соответствующее значение v равно 4513 м/с. Это на 16% согласуется с 5392 м/с — средним значением по всем элементарным твердым телам, и на 14% с 5267 м/с — средним значением по всем твердым телам на графике выше.

В эксперименты также были включены данные по скорости звука в жидкости при комнатной температуре, которые варьируются от 1000 до 2000 м/с. Однако в высокотемпературных жидких металлах, таких как Al, Fe, Mg и Ni, v достигает более высоких значений в диапазоне от 4000 до 5000 м/с. Из этого следует, что скорость звука в жидкостях полностью удовлетворяет расчетную верхнюю границу скорости.

Ученые отмечают, что хоть приближения, использованные в некоторых формулах, и могут повлиять на вычисление v и его оценку, vu все же формируется исходя из фундаментальных констант. Другими словами, в конечном итоге приближения не имеют столь значимого влияния.

Также было установлено, что рассчитанное значение верхней границы скорости звука применимо к твердым телам не только с сильной межатомной связью, но и со слабой. Формула №3, 6 и 7 предполагают, что валентные электроны непосредственно участвуют в связывании. Следовательно, они играют важную роль в системах с металлической, ковалентной и ионной связью. Несмотря на то, что связывание в твердых телах со слабой связью также имеет электромагнитное происхождение, слабые дипольные и ван-дер-ваальсовые взаимодействия приводят к меньшему E и, как результат, меньшему v. Потому из этого следует, что верхняя граница vu применима и к слабосвязанным системам.

Ученые отмечают, что верхняя граница vu соответствует твердому водороду с прочной металлической связью. Данная фаза вещества существует только при мегабарном давлении и динамически нестабильна при атмосферном давлении, где происходит образование молекул. Посему было решено провести расчеты v в атомарном водороде, чтобы подтвердить верность расчетов как таковых.

Расчеты скорость звука в атомарном водороде проводились с применением структуры I41/amd, которая является наилучшей структурой-образцом для твердого атомарного металлического водорода. Известно, что эта структура становится термодинамически стабильной в диапазоне давлений от 400 до 500 ГПа, ниже которого твердый водород является молекулярным твердым телом. Однако было обнаружено, что I41/amd динамически устойчива при давлениях выше примерно 250 ГПа, поэтому расчеты проводились в диапазоне давления от 250 до 1000 ГПа.

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна
Изображение №3

На графике выше представлена скорость звука как функция давления и плотности. Рассчитанное значение скорости звука было ниже значения vu в широком диапазоне давлений. Увеличение v выше расчетной верхней границы возникает лишь при давлении 600 ГПа и выше. Следовательно, при нормальных условиях скорость звука не будет превышать расчетную верхнюю границу.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог

В данном труде ученые определили, что важнейшую роль в оценке максимально возможной скорости звука играют две фундаментальные константы — постоянная тонкой структуры и отношение массы протона к массе электрона.

Проведенные расчеты были проверены на практике с применением разнообразных материалов. Эксперименты позволили установить, что скорость звука должна уменьшаться с атомарной массой. Из этого следует, что максимальная скорость звука достигается в твердом атомарном водороде, который может существовать в таком виде лишь при очень высоком давлении. Тем не менее было установлено, что верхняя граница скорости звука в рамках данного исследования составляет 36100 м/с. С практической точки зрения, подобные исследования крайне важны для понимания тех или иных материалов, а также их свойств.

Естественно, ученые не намерены останавливаться на достигнутом. Их расчеты и соответствующие экспериментальные данные требуют перепроверки, уточнения и дополнительного подтверждения. В будущем данное исследование будет продолжено, а верхняя граница скорости звука может неожиданно сместиться в большую или меньшую сторону ввиду новых данных. Как бы то ни было, фундаментальный подход остается прежним, а сам факт лучшего понимания процессов, протекающих вокруг нас, позволяет с уверенностью смотреть на развитие данного исследования.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. 🙂

Немного рекламы

Источник

Скорость звука в Километров в секунду

Конвертировать из Скорость звука в Километров в секунду. Введите сумму, которую вы хотите конвертировать и нажмите кнопку конвертировать.

1 Скорость звука = 0.343 Километров в секунду10 Скорость звука = 3.43 Километров в секунду2500 Скорость звука = 857.5 Километров в секунду
2 Скорость звука = 0.686 Километров в секунду20 Скорость звука = 6.86 Километров в секунду5000 Скорость звука = 1715 Километров в секунду
3 Скорость звука = 1.029 Километров в секунду30 Скорость звука = 10.29 Километров в секунду10000 Скорость звука = 3430 Километров в секунду
4 Скорость звука = 1.372 Километров в секунду40 Скорость звука = 13.72 Километров в секунду25000 Скорость звука = 8575 Километров в секунду
5 Скорость звука = 1.715 Километров в секунду50 Скорость звука = 17.15 Километров в секунду50000 Скорость звука = 17150 Километров в секунду
6 Скорость звука = 2.058 Километров в секунду100 Скорость звука = 34.3 Километров в секунду100000 Скорость звука = 34300 Километров в секунду
7 Скорость звука = 2.401 Километров в секунду250 Скорость звука = 85.75 Километров в секунду250000 Скорость звука = 85750 Километров в секунду
8 Скорость звука = 2.744 Километров в секунду500 Скорость звука = 171.5 Километров в секунду500000 Скорость звука = 171500 Километров в секунду
9 Скорость звука = 3.087 Километров в секунду1000 Скорость звука = 343 Километров в секунду1000000 Скорость звука = 343000 Километров в секунду

Встроить этот конвертер вашу страницу или в блог, скопировав следующий код HTML:

Источник

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

Скорость звука в идеальном газе зависит только от его температуры и состава. Скорость имеет слабую зависимость от частоты и давления в обычном воздухе, немного отклоняясь от идеального поведения.

СОДЕРЖАНИЕ

История

Базовые концепты

Передачу звука можно проиллюстрировать с помощью модели, состоящей из массива сферических объектов, связанных между собой пружинами.

Скорость звука в модели зависит от жесткости / жесткости пружины и массы сфер. Пока расстояние между сферами остается постоянным, более жесткие пружины / связи передают энергию быстрее, в то время как более крупные сферы передают энергию медленнее.

Например, звук в никеле распространяется в 1,59 раза быстрее, чем в бронзе, из-за большей жесткости никеля примерно при такой же плотности. Точно так же звук распространяется примерно в 1,41 раза быстрее в газе легкого водорода ( протия ), чем в газе тяжелого водорода ( дейтерия ), поскольку дейтерий имеет аналогичные свойства, но в два раза большую плотность. В то же время звук «компрессионного типа» будет распространяться быстрее в твердых телах, чем в жидкостях, и быстрее в жидкостях, чем в газах, потому что твердые тела сложнее сжимать, чем жидкости, а жидкости, в свою очередь, труднее сжимать. чем газы.

В некоторых учебниках ошибочно утверждается, что скорость звука увеличивается с плотностью. Это понятие проиллюстрировано представлением данных для трех материалов, таких как воздух, вода и сталь; Каждый из них имеет существенно разную сжимаемость, что более чем компенсирует разницу в плотности. Наглядным примером этих двух эффектов является то, что звук в воде распространяется всего в 4,3 раза быстрее, чем в воздухе, несмотря на огромные различия в сжимаемости двух сред. Причина в том, что большая плотность воды, которая замедляет звук в воде по сравнению с воздухом, почти компенсирует разницу в сжимаемости двух сред.

Практический пример можно наблюдать в Эдинбурге, когда «Пистолет на час» стреляет в восточном конце Эдинбургского замка. Стоя у подножия западной оконечности Касл-Рока, звук ружья можно услышать сквозь скалу, незадолго до того, как он прибудет по воздуху, частично задержанный немного более длинным маршрутом. Это особенно эффективно, если производится салют из нескольких пистолетов, например, «День рождения королевы».

Сжатие и поперечные волны

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

Уравнения

Для жидкостей в целом скорость звука c определяется уравнением Ньютона – Лапласа:

Зависимость от свойств среды

В газах адиабатическая сжимаемость напрямую связана с давлением через коэффициент теплоемкости (показатель адиабаты), в то время как давление и плотность обратно пропорциональны температуре и молекулярной массе, поэтому важны только полностью независимые свойства температуры и молекулярной структуры (теплоемкость соотношение может определяться температурой и молекулярной структурой, но простой молекулярной массы недостаточно для ее определения).

Изменение высоты и последствия для атмосферной акустики

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

Практическая формула для сухого воздуха

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

Приблизительную скорость звука в сухом (влажность 0%) воздухе в метрах в секунду при температуре около 0 ° C можно рассчитать по формуле

\ mathrm <м / с>,> скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

Это уравнение получено из первых двух членов разложения Тейлора следующего более точного уравнения:

\ mathrm .> скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

Разделив первую часть и умножив вторую часть справа на √ 273,15, мы получим точно эквивалентную форму

\ mathrm .> скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

который также можно записать как

\ mathrm <м / с>> скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

Подробности

Скорость звука в идеальных газах и воздухе

Для идеального газа K ( объемный модуль упругости в уравнениях выше, эквивалентный C, коэффициент жесткости в твердых телах) определяется выражением

таким образом, из приведенного выше уравнения Ньютона – Лапласа скорость звука в идеальном газе определяется выражением

Это уравнение применяется только тогда, когда звуковая волна представляет собой небольшое возмущение для условий окружающей среды, и выполняются некоторые другие отмеченные условия, как указано ниже. Расчетные значения c воздух незначительно отличаются от экспериментально определенных значений.

Численная подстановка приведенных выше значений дает приближение скорости звука для газов в идеальном газе, которое является точным при относительно низких давлениях и плотностях газа (для воздуха это включает стандартные условия на уровне Земли на уровне моря). Кроме того, для двухатомных газов использование γ = 1,4000 требует, чтобы газ существовал в достаточно высоком температурном диапазоне, чтобы вращательная теплоемкость была полностью возбуждена (т.е. вращение молекул полностью использовалось в качестве «перегородки» или резервуара тепловой энергии); но в то же время температура должна быть достаточно низкой, чтобы молекулярные колебательные моды не вносили вклад в теплоемкость (т. е. незначительное тепло переходит в вибрацию, так как все колебательные квантовые моды выше моды минимальной энергии имеют слишком высокие энергии, чтобы их мог заселить значительное количество молекул при этой температуре). Для воздуха эти условия выполняются при комнатной температуре, а также при температурах значительно ниже комнатной (см. Таблицы ниже). См. Раздел, посвященный газам в удельной теплоемкости, для более полного обсуждения этого явления.

Для воздуха мы вводим сокращение

Подстановка числовых значений

р знак равно 8,314 463 J / ( м о л ⋅ K ) <\ Displaystyle R = 8,314 \, 463

\ mathrm > скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

для молярной газовой постоянной в Дж / моль / Кельвин, и

M а я р знак равно 0,028 964 5 k грамм / м о л <\ displaystyle M _ <\ mathrm > = 0,028 \, 964 \, 5

\ mathrm <кг / моль>> скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

\ mathrm .> скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

\ mathrm .> скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

Приведенный выше вывод включает первые два уравнения, приведенные в разделе «Практическая формула для сухого воздуха» выше.

Воздействие сдвига ветра

Для распространения звука экспоненциальное изменение скорости ветра с высотой можно определить следующим образом:

В битве при Юке в ходе Гражданской войны в США в 1862 году акустическая тень, которая, как считается, была усилена северо-восточным ветром, не позволила двум дивизиям солдат Союза участвовать в битве, поскольку они не могли слышать звуки боя всего в 10 км (шесть миль). ) по ветру.

Таблицы

Звуковые измерения
Влияние температуры на свойства воздуха

Температура,
T ( ° C )
Скорость
звука, ц
( м / с )
Плотность
воздуха, ρ
( кг / м 3 )
Характеристический удельный
акустический импеданс,
z 0 ( Па · с / м )
35 год351,881,1455403,2
30349,021,1644406,5
25346,131,1839409,4
20343,211,2041413,3
15340,271,2250416,9
10337,311,2466420,5
5334,321,2690424,3
0331,301,2922428,0
−5328,251,3163432,1
−10325,181,3413436,1
−15322,071,3673440,3
−20318,941,3943444,6
−25315,771,4224449,1

При нормальных атмосферных условиях температура и, следовательно, скорость звука зависят от высоты:

Влияние частоты и состава газа

Общие физические соображения

Среда, в которой распространяется звуковая волна, не всегда реагирует адиабатически, и в результате скорость звука может изменяться с частотой.

Обратите внимание, что в этом примере мы предположили, что температура достаточно низкая, чтобы на теплоемкость не влияла молекулярная вибрация (см. Теплоемкость ). Однако колебательные моды просто вызывают гаммы, которые уменьшаются до 1, поскольку колебательные моды в многоатомном газе дают газу дополнительные способы хранения тепла, которые не влияют на температуру и, таким образом, не влияют на скорость молекул и скорость звука. Таким образом, эффект более высоких температур и вибрационной теплоемкости увеличивает разницу между скоростью звука в одноатомных и многоатомных молекулах, при этом скорость остается большей в одноатомных.

Практическое применение в воздухе

Безусловно, наиболее важным фактором, влияющим на скорость звука в воздухе, является температура. Скорость пропорциональна квадратному корню из абсолютной температуры, что дает увеличение примерно на 0,6 м / с на градус Цельсия. По этой причине высота звука музыкального духового инструмента увеличивается с повышением его температуры.

Скорость звука увеличивается из-за влажности. Разница между влажностью 0% и 100% составляет около 1,5 м / с при стандартном давлении и температуре, но величина эффекта влажности резко возрастает с температурой.

число Маха

Число Маха, полезная величина в аэродинамике, представляет собой отношение скорости воздуха к локальной скорости звука. На высоте по объясненным причинам число Маха является функцией температуры.

Однако летные приборы самолета работают с использованием перепада давления для вычисления числа Маха, а не температуры. Предполагается, что конкретное давление представляет собой конкретную высоту и, следовательно, стандартную температуру. Летательные приборы самолета должны работать таким образом, потому что давление торможения, измеряемое трубкой Пито, зависит как от высоты, так и от скорости.

Экспериментальные методы

Существует ряд различных методов измерения звука в воздухе.

Одноразовые методы хронометража

Если источник звука и два микрофона расположены по прямой линии с источником звука на одном конце, то можно измерить следующее:

Другие методы

В этих методах, то время измерение было заменено измерением обратного времени ( частоты ).

Высокоточные измерения в воздухе

Негазообразные среды

Скорость звука в твердых телах

Трехмерные твердые тела

В твердом теле имеется ненулевая жесткость как для объемных деформаций, так и для деформаций сдвига. Следовательно, можно генерировать звуковые волны с разными скоростями в зависимости от режима деформации. Звуковые волны, вызывающие объемные деформации (сжатие) и сдвиговые деформации (сдвиг), называются волнами давления (продольными волнами) и поперечными волнами (поперечными волнами) соответственно. При землетрясениях соответствующие сейсмические волны называются P-волнами (первичными волнами) и S-волнами (вторичными волнами) соответственно. Скорости звука этих двух типов волн, распространяющихся в однородном трехмерном твердом теле, соответственно определяются выражением

Одномерные твердые тела

Скорость звука для волн давления в жестких материалах, таких как металлы, иногда указывается для «длинных стержней» рассматриваемого материала, скорость в которых легче измерить. В стержнях, диаметр которых меньше длины волны, скорость чистых волн давления может быть упрощена и определяется выражением:

Скорость звука в жидкостях

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

В жидкости единственная ненулевая жесткость связана с объемной деформацией (жидкость не выдерживает поперечных сил).

Следовательно, скорость звука в жидкости определяется выражением

Морская вода

скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

4 м / с ) и солености (изменение 1 ‰

1 м / с ), и эмпирические уравнения были получены чтобы точно рассчитать скорость звука по этим переменным. Другие факторы, влияющие на скорость звука, незначительны. Поскольку в большинстве районов океана температура уменьшается с глубиной, профиль скорости звука с глубиной уменьшается до минимума на глубине нескольких сотен метров. Ниже минимума скорость звука снова увеличивается, поскольку эффект увеличения давления преодолевает эффект снижения температуры (справа). Для получения дополнительной информации см. Dushaw et al.

Эмпирическое уравнение для скорости звука в морской воде предоставлено Маккензи:

(Примечание: график зависимости скорости звука от глубины не коррелирует напрямую с формулой Маккензи. Это связано с тем, что температура и соленость различаются на разных глубинах. Когда T и S остаются постоянными, сама формула всегда увеличивается с глубина.)

Другие уравнения скорости звука в морской воде точны в широком диапазоне условий, но намного сложнее, например, уравнение В.А. Дель Гроссо и уравнение Чена-Миллеро-Ли.

Скорость звука в плазме

Скорость звука в плазме для общего случая, когда электроны горячее, чем ионы (но не намного горячее), задается формулой (см. Здесь )

\ mathrm <м / с>,> скорость звука в секунду метров чему равна. Смотреть фото скорость звука в секунду метров чему равна. Смотреть картинку скорость звука в секунду метров чему равна. Картинка про скорость звука в секунду метров чему равна. Фото скорость звука в секунду метров чему равна

В отличие от газа, давление и плотность определяются отдельными составляющими: давлением электронов и плотностью ионов. Они связаны через флуктуирующее электрическое поле.

Градиенты

Когда звук распространяется равномерно во всех направлениях в трех измерениях, интенсивность падает пропорционально обратному квадрату расстояния. Однако в океане есть слой, называемый «глубокий звуковой канал» или канал SOFAR, который может удерживать звуковые волны на определенной глубине.

Аналогичный эффект происходит в атмосфере. Проект Могул успешно использовал этот эффект для обнаружения ядерного взрыва на значительном расстоянии.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *