система вару в конструкции рлс для чего предназначена

Временная регулировка усиления

буи, малые суда, катера, шлюпки) могут быть подавлены и своевременно не обнаружены. ВАРУ формирует управляющее напряжение (напряжение смещения в каскадах УПЧ) так, чтобы усиление приемника возрастало с увеличением дистанции до объекта. Практически управляющее напряжение ВАРУ имеет экспоненциальную характеристику.

Принцип формирования напряжения ВАРУ заключается в том, что одновременно с излучением зондирующего СВЧ импульса, автоматически включается схема регулировки усиления приемника, которая формирует импульс, состоящий из прямоугольного импульса (длительность которого равна длительности зондирующего) и экспоненциальной составляющей. Прямоугольная составляющая сигнала ВАРУ запирает усилительные каскады приемника на время излучения мощного СВЧ импульса, а экспоненциальная составляющая плавно, по экспоненте, постепенно открывает усилительные каскады, тем самым увеличивает усиление приемника во времени (то есть – по дальности).

система вару в конструкции рлс для чего предназначена. Смотреть фото система вару в конструкции рлс для чего предназначена. Смотреть картинку система вару в конструкции рлс для чего предназначена. Картинка про система вару в конструкции рлс для чего предназначена. Фото система вару в конструкции рлс для чего предназначена

Влияние работы других радиолокаторов.

Иногда на экране радиолокатора появляются сигналы в виде точек, пунктирных линий или сплошных линий. Положение таких сигналов на экране и их взаимное расположение может быть разнообразным, но наиболее часто встречаются сигналы в виде спиральных пунктирных линий.

Дата добавления: 2017-10-04 ; просмотров: 4105 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Примем в проектируемом приемнике двухканальную следящую систему АПЧ, как более простую по сравнению с поисковой.

В состав приемников импульсных сигналов входят такие различные автоматические регулировки усиления: инерционная АРУ, временная (ВАРУ), мгновенная (МАРУ) и быстродействующая (БАРУ).

ВАРУ изменяет усиление приемника во времени определенным образом и применяется чаще всего для уменьшения мешающего действия отражений предметов, окружающих РЛС. При излучении зондирующего импульса и некоторое время после излучения, ВАРУ снижает усиление УПЧ, ослабляя отражение от близких предметов и, напротив, увеличивает усиление УПЧ при приеме слабых сигналов далеких предметов.

МАРУ применяется при широком динамическом диапазоне сигналов для различения слабых отраженных сигналов на фоне сильных непрерывных помех. С помощью МАРУ обеспечивается логарифмическая амплитудная характеристика видеоусилителя.

БАРУ в сочетании с дифференцирующей цепью применяется для устранения перегрузок в последних каскадах УПЧ при действии непрерывных помех или длительных импульсов с малой скважностью. Такими помехами являются сигналы, отраженные от облаков, гор, крупных зданий, различных сооружений и других, так называемых, местных предметов. БАРУ не должна срабатывать от импульсов сигнала. Поэтому ее постоянная времени выбирается значительно больше длительности импульсов. Обычно берут tБАРУ=30 мкс.

Учитывая вид приемника (применяется в бортовой РЛС), он имеет сравнительно небольшой динамический диапазон и работает в условиях мешающих отражений от местных предметов и подстилающей поверхности, применим в проектируемом приемнике ВАРУ и БАРУ.

Для обеспечения возможности работы приемника и передатчика на одну антенну и защиты при этом приемника от зондирующих импульсов, в импульсных РЛС обычно применяются быстродействующие антенные переключатели (АП).

В РЛС используются два типа АП: АП на основе разрядников и отрезков четвертьволновых линий и ферритовый АП на основе ферритовых циркуляторов и вентилей. Обычно ФАП представляют собой последовательное соединение типа “Y- циркулятор-вентиль” и обеспечивает развязку изолированного плеча, т.е. передатчика и приемника по мощности 16-20 дБ.

Для уменьшения коэффициента шума и повышения чувствительности в приемниках импульсных РЛС в качестве УРЧ применяют малошумящие усилители (МШУ) СВЧ: полупроводниковые параметрические усилители (ППУ). Вопрос о необходимости применения и выборе типа УРЧ окончательно решается после расчета допустимого коэффициента шума приемника Ng по заданной величине реальной чувствительности.

В качестве визуальных индикаторов в РЛС обычно используются электронно-лучевые трубки (ЭЛТ). Их динамический диапазон яркостей лежит в пределах (13-20) дБ. Поэтому при проектировании необходимо учитывать, чтобы пропускная способность приемного и индикаторного устройств была согласованна. Это означает, что динамический диапазон выходных сигналов приемника не должен превышать диапазон яркостей ЭЛТ.

На основе изложенных выше соображений можно составить структурную схему проектируемого приемника, которая должна быть уточнена в процессе дальнейших расчетов. Структурная схема приведена в приложении на рисунке 1.

1.2. Структурная схема приёмника

Структурная схема приведена на рисунке 1 и представляет собой типовую структурную схему приёмо-передающего устройства импульсной некогерентной РЛС.

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Схема временной автоматической регулировки усилителя (ВАРУ)

Дата добавления: 2014-05-22 ; просмотров: 5699 ; Нарушение авторских прав

Схема ВАРУ используется в режиме «Контур» и предназначается для исключения зависимости выходного напряжения ПУПЧ от расстояния до отражающей облачности.

Узел ВАРУ выдает регулирующее напряжение, необходимое для изменения усиления ПУПЧ в зависимости от дальности, с которой приходят отраженные сигналы.

ВАРУ применяется, когда используется узкая диаграмма направленности антенны, вследствие чего амплитуда сигнала на входе приемника сильно зависит от расстояния до отражающего объекта.

В таких условиях без ВАРУ близко расположенная облачность может быть изображена на экране как опасный грозовой фронт, то есть при отсутствии схемы ВАРУ сильные сигналы, отраженные от близлежащих слоев «неопасной» облачности, будут просматриваться на экране в виде темных контуров, соответствующих «опасным» зонам облачности, что недопустимо.

Кроме режима «Контур», схема ВАРУ используется на масштабе 30 км в режимах «Земля» и «Снос»,несмотря на то, что в этих случаяхприменяется косеканс-квадратичная диаграмма направленности, включение в работу схемы ВАРУ улучшает качество изображения.

Это объясняется тем, что на близких расстояниях достоинство косеканс-квадратичной диаграммы проявляется слабо и велико влияние боковых лепестков ДН на малых высотах.

Импульс ВАРУ подается вместе с напряжением ручной регулировки усиления (РРУ) на три последних каскада ПУПЧ и регулирует их усиление.

ПРИНЦИП РАБОТЫ –(А.П.Тихонов – синяя книга)

В состав схемы ВАРУ входят (рис. 2.11, б):

1. Ждущий блокинг-генератор (ЖБГ), собранный на транзисторе ПП1;

2. Зарядный (разрядный) каскад на транзисторе ПП2;

3. Времязадающая цепочка (С6, R12, R11);

4. Несуммирующий смеситель (ППЗ, ПП4), то есть выходного эмиттерного повторителя ПП3 и эмиттерного повторителя ПП4, через который в сигнал ВАРУ замешивается бланкирующий импульс, запирающий ПУПЧ во время излучения зондирующего импульса.

Ждущий блокинг-генератор отпирается отрицательным старт-импульсом амплитудой 6 В. Положительный импульс с блокинг-генератора поступает на разрядный каскад, в котором на конденсаторе С6 происходит формирование регулирующего напряжения. Этот конденсатор быстро заряжается во время действия импульса и разряжается по экспоненциальному закону в промежутке времени между импульсами, когда транзистор разрядного каскада заперт. Разряд происходит через резисторы R11 и R12. Изменение амплитуды регулирующего напряжения производится резистором R12 (рис.2.15.).

В выходном эмиттерном повторителе происходит сложение регулирующего напряжения с импульсом, бланкирующим приемник во время действия зондирующего импульса. С выхода ВАРУ напряжение поступает на ПУПЧ.

Схема ВАРУ работает при подаче в его узел напряжения 25В через нормально замкнутые контакты реле Р4 блока Гр2Б. Обмотка этого реле оказывается, обесточена только в режимах «Контур», «Снос» и на масштабе 30 км в режиме «Земля». Во всех остальных случаях реле Р4 срабатывает и выключает схему ВАРУ.

Когда реле Р4обесточено (рис. 2.11,б), старт-импульс модулятора запускает ждущий блокинг-генератор (ЖБГ), который выдает импульс положительной полярности, открывающий зарядный каскад. При этом происходит заряд конденсатора С6 от источника 25В по цепи с малой постоянной времени. Когда импульс ЖБГ заканчивается, зарядный каскад закрывается и возникает разряд конденсатора по цепи с большой постоянной времени (через R11 и R12).

система вару в конструкции рлс для чего предназначена. Смотреть фото система вару в конструкции рлс для чего предназначена. Смотреть картинку система вару в конструкции рлс для чего предназначена. Картинка про система вару в конструкции рлс для чего предназначена. Фото система вару в конструкции рлс для чего предназначена

Рис. 2.15.

На конденсаторе С6 во время разряда формируется импульс ВАРУ экспоненциальной формы отрицательной полярности. Он подается на базу транзистора ППЗ в схеме смесителя. На базу второго транзистора ПП4 подается старт-импульс отрицательной полярности. Оба импульса смешиваются и на нагрузке смесителя R19 появляется импульс отрицательной полярности, предназначенный для регулировки усиления ПУПЧ во времени.

Форма импульса на выходе схемы ВАРУ показана на рис. 2.11, в. Он подается вместе с напряжением РРУ (с потенциометра R2) на три последних каскада усилителя и изменяет их коэффициент усиления в начале каждого цикла работы на прием в течение 250мкс.

Через цепочки RC импульс поступает на катоды диодов Д1, Д2, ДЗ. Во время действия старт-импульса токи диодов оказываются настолько велики, что транзисторы ПП1, ПП2, ППЗ закрываются, т. е. на время работы передатчика ПУПЧ бланкируется.

Бланкирование происходит во всех режимах работы PЛC, вне зависимости от того, используется схема ВАРУ или нет. Благодаря бланкированию исключается возможность выхода из строя транзисторов под действием сигнала передатчика, просачивающегося через все элементы защиты приемника.

С течением времени, в соответствии с формой импульса ВАРУ, отрицательное напряжение на катодах диодов уменьшается, уменьшаются их токи, а эмиттерные токи транзисторов ПП1, ПП2, ППЗ увеличиваются, коэффициенты усиления каскадов также увеличиваются и через 250мкс достигают своего номинального значения.

Источник

Что такое АРУ в приемнике?

Методы автоматической регулировки усиления

В большинстве радиолокационных приемников для обеспечения линейной обработки (без ограничения амплитуды) принятых сигналов применяются те или иные средства для управления уровнем общего усиления.

EnglishRussian (Cyrillic)German
STCsensitivity
time
control
Временная
Автоматическая
Регулировка
Усиления
entfernungs- (also: zeit-) abhängige
automatische Verstärkungsregelung
(Siemens- Neudeutsch: GTC: Gain Time Control)
AGCautomatic
gain
control
Шумовая
Автоматическая
Регулировка
Усиления
rauschabhängige
Automatische
Verstärkungs-
Regelung
MGCmain
gain
control
Ручная
Регулировка
Усиления
Handregelung
log amplogarithmic
amplifier
Логарифмический усилительlogarithmischer Verstärker

Таблица 1. Методы регулировки усиления

Временная автоматическая регулировки усиления (ВАРУ)

система вару в конструкции рлс для чего предназначена. Смотреть фото система вару в конструкции рлс для чего предназначена. Смотреть картинку система вару в конструкции рлс для чего предназначена. Картинка про система вару в конструкции рлс для чего предназначена. Фото система вару в конструкции рлс для чего предназначена

Зависимость коэффициента усиления приемника от времени при использовании метода ВАРУ

система вару в конструкции рлс для чего предназначена. Смотреть фото система вару в конструкции рлс для чего предназначена. Смотреть картинку система вару в конструкции рлс для чего предназначена. Картинка про система вару в конструкции рлс для чего предназначена. Фото система вару в конструкции рлс для чего предназначена

Зависимость коэффициента усиления приемника от времени при использовании метода ВАРУ

Одной из особенностей функционирования приемников радиолокаторов является то, что амплитуды принимаемых ими эхо-сигналов могут изменяться в очень широких пределах в зависимости от дальности до цели. По этой причине настройки усиления приемника, предпочтительные для эхо-сигналов целей на малых дальностях, не подходят для приема сигналов, отраженных целями, находящимися на больших дальностях. Коэффициент усиления приемника должен быть максимальным для эхо-сигналов целей на больших дальностях и минимальным для эхо-сигналов ближних целей. Очевидно, что коэффициент усиления должен изменяться в зависимости от времени: быть минимальным в начале периода зондирования и постепенно увеличиваться по мере увеличения времени запаздывания эхо-сигналов. Схему, реализующую регулировку коэффициента усиления в зависимости от времени в пределах одного периода зондирования, называют схемой временной автоматической регулировки усиления (ВАРУ) или аттенюатором с переменным коэффициентом ослабления.

Временная автоматическая регулировка усиления реализуется путем подачи меняющегося во времени напряжения смещения на усилительные каскады усилителя промежуточной частоты. На Рисунке 1 линией красного цвета показана типовая зависимость коэффициента усиления от времени. Зеленой линией показана зависимость амплитуды сигнала на входе приемника. Во время генерирования в передатчике и излучения зондирующего сигнала схема ВАРУ уменьшает коэффициент усиления приемника до нуля для того, чтобы предотвратить усиление сигнала передатчика, просачивающегося в приемный тракт (сигнал «пролаза»). После окончания излучения зондирующего сигнала напряжение ВАРУ начинает расти, постепенно увеличивая коэффициент усиления приемника. В идеальном случае коэффициент усиления приемника должен увеличиваться прямо пропорционально четвертой степени дальности (R 4 ), то есть обратно пропорционально уменьшению мощности эхо-сигнала. На практике эту зависимость часто заменяют экспоненциальной функцией, легко реализуемой в виде напряжения на заряжающемся конденсаторе.

Регулировку коэффициента усиления приемника при помощи ВАРУ обычно ограничивают дальностью около 50 миль. Считается, что в большинстве случаев сигналы, отраженные целими, находящимися ближе 50 миль еще могут перегрузить приемник (ввести его в насыщение), а после 50 миль это уже маловероятно и регулировка усиления уже не требуется.

Источник

Система вару в конструкции рлс для чего предназначена

Предлагаемое устройство временной автоматической регулировки усиления (ВАРУ) относится к радиолокационной технике и может быть использовано в приемниках морских РЛС.

Известные устройства ВАРУ радиолокационных приемников содержат аттенюатор и формирователь импульса ВАРУ и сводятся, например, к устройству ВАРУ (Лукошкин А.П., Радиолокационные усилители с большим диапазоном входных сигналов. М., «Сов. Радио», 1964, стр. 221-224), выбранному в качестве прототипа и содержащему аттенюатор и формирователь импульса ВАРУ, выход которого соединен с управляющим входом аттенюатора, а вход является входом импульса запуска. В состав прототипа введены усилитель и детектор приемника, так как они участвуют в работе предлагаемого устройства. Усилитель и детектор соединены последовательно и включены на выходе аттенюатора.

После поступления импульса запуска, совпадающего с зондирующим сигналом, в формирователе импульса ВАРУ формируется импульс ВАРУ, поступающий с выхода формирователя импульса ВАРУ на управляющий вход аттенюатора. Под воздействием этого импульса коэффициент передачи аттенюатора изменяется во времени таким образом, чтобы подавить помехи от морской поверхности до уровня внутренних шумов приемника.

Форма импульса ВАРУ (его длительность и амплитуда) устанавливается оператором в процессе работы таким образом, чтобы засветка экрана индикатора сигналами помех от морской поверхности и внутренних шумов была одинаковой.

Недостатком известного устройства является то, что оно обеспечивает малые помехозащищенность и чувствительность приемника. Помехи от морской поверхности изменяются не только по дальности, но и в зависимости от азимутального направления излучения антенны РЛС по отношению к фронту морских волн: на направлениях излучения навстречу движению морских волн интенсивность этих помех максимальна; на направлениях излучения по движению морских волн их интенсивность меньше максимальной примерно на 6 дБ, а на направлениях вдоль гребней морских волн меньше максимальной примерно на 20 дБ. В известном устройстве ВАРУ усиление приемника во времени увеличивается с увеличением дальности по определенному закону, но постоянно с изменением азимутального направления. При этом интенсивность помех, проходящих с разных азимутальных направлений, неодинакова, и равномерное подавление их до уровня внутренних шумов невозможно: на некоторых направлениях интенсивность помех после устройства ВАРУ выше интенсивности внутренних шумов, что ухудшает помехозащищенность РЛС (возрастает вероятность ложных тревог); на других направлениях устройство ВАРУ подавляет помехи от морской поверхности, а вместе с ними и слабые сигналы цели, ниже уровня внутренних шумов, что снижает чувствительность приемника (понижается вероятность правильного обнаружения). В известном устройстве поэтому невозможно обеспечить одновременно максимальную чувствительность и помехозащищенность на всех азимутальных направлениях.

Целью предлагаемого устройства является повышение помехозащищенности и чувствительности приемника РЛС.

Наличие блока памяти, в котором запоминается среднее значение помех от морской поверхности за предыдущий период повторения, обеспечивает формирование в формирователе импульса ВАРУ под действием напряжения, поступающего с выхода блока памяти, импульса ВАРУ, соответствующего интенсивности помех, поступающих с данного азимутального направления, и закону их изменения по дальности. В цепи, образованной дополнительным аттенюатором и интегратором, вырабатывается среднее значение помех от морской поверхности посредством того, что в дополнительном аттенюаторе, коэффициент передачи которого под действием импульса ВАРУ, поступающего с выхода формирователя импульса ВАРУ на управляющий вход дополнительного аттенюатора, меняется обратно пропорционально коэффициенту передачи аттенюатора, из сигналов помехи, поступающих с выхода детектора, формируются сигналы, форма которых соответствует огибающей сигналов помех, действующих на входе аттенюатора; затем эти сигналы интегрируются (усредняются) в интеграторе. Ограничитель и ключевая схема обеспечивает дополнительную селекцию помех от морской поверхности по амплитуде и дальности от сигналов цели. Синхронизатор, запускаемый импульсом запуска, вырабатывает импульсы, поступающие на управляющие входы блока памяти, интегратора и ключевой схемы и обеспечивающие их работу в определенной последовательности. В частности, синхронизатор обеспечивает в течение данного периода повторения после окончания действия помех от морской поверхности запись их среднего значения с выхода интегратора в блок памяти. В соответствии с величиной этого среднего значения в последующий период повторения в формирователе импульса ВАРУ формируется импульс ВАРУ формы, соответствующей интенсивности и закону изменения по дальности помех от морской поверхности. Так как от периода к периоду повторения характеристики помех от морской поверхности меняются незначительно, то в последующий период повторения в аттенюаторе под действием импульса ВАРУ производится подавление помех от морской поверхности, поступающих с данного азимутального направления, до уровня внутренних шумов приемника. Предлагаемое устройство ВАРУ обеспечивает такое подавление помех от морской поверхности, поступающих с любого азимутального направления. Это дает возможность улучшить помехозащищенность РЛС и повысить чувствительность ее приемника.

В качестве формирователя импульса ВАРУ в предлагаемом устройстве могут быть использованы устройства, которые обеспечивают формирование на своем выходе импульса ВАРУ, форма которого соответствует закону изменения помех по дальности и регулируется напряжением, поступающим с входящего в их состав блока постоянного напряжения. При использовании их в предлагаемом устройстве блоком постоянного напряжения является выход блока памяти.

Предлагаемое устройство поясняется чертежами, где:

— на фиг. 1 приведена блок-схема предлагаемого устройства;

— на фиг. 2 приведены формы напряжений в разных точках блок-схемы фиг. 1.

Устройство ВАРУ (фиг. 1) содержит аттенюатор 1, усилитель 2, детектор 3, ограничитель 4, ключевую схему 5, дополнительный аттенюатор 6, интегратор 7 и блок 8 памяти, соединенные последовательно, а также формирователь 9 импульса ВАРУ и синхронизатор 10. Выход формирователя 9 импульса ВАРУ соединен с управляющими входами аттенюатора 1 и дополнительного аттенюатора 6. Соединенные вместе входы формирователя 9 импульса ВАРУ и синхронизатора 10 являются входом импульса запуска. Выходы синхронизатора 10 соединены с управляющими входами блока 8 памяти, интегратора 7 и ключевой схемы 5. Детектор 3 является либо детектором приемника, либо дополнительным детектором. Соответственно выходом устройства ВАРУ является либо выход детектора 3, либо выход усилителя 2. В качестве формирователя 9 импульса ВАРУ могут быть, например, использованы устройства, в которых в качестве источника постоянного напряжения используется выход блока 8 памяти.

После предыдущего периода повторения в блоке 8 памяти было запомнено среднее значение помех от морской поверхности. Напряжение с выхода блока 8 памяти (фиг. 2,а) поступает на управляющий вход формирователя 9 импульса ВАРУ. При поступлении импульса запуска (фиг. 2,б), передний фронт которого опережает передний фронт зондирующего сигнала РЛС, а задний фронт совпадает с задним фронтом зондирующего сигнала, на вход формирователя 9 импульса ВАРУ на его выходе формируется импульс ВАРУ (фиг. 2,в). Форма этого импульса определяется величиной напряжения на выходе блока 8 памяти и соответствует интенсивности и закону изменения помех от морской поверхности. После окончания импульса запуска на вход аттенюатора 1 поступают помехи от морской поверхности, среди которых может находиться сигнал цели, и внутренний шум приемника (фиг. 2,г). Помехи от морской поверхности действуют на малых дальностях (в начале периода повторения). Импульс ВАРУ поступает на управляющий вход аттенюатора 1 и изменяет его коэффициент передачи обратно пропорционально закону изменения помехи от морской поверхности. На выходе аттенюатора 1 помехи от морской поверхности подавлены до уровня внутренних шумов приемника (фиг. 2,д), однако отношение сигнал/помеха остается таким же, как и на входе аттенюатора 1. Сигналы с выхода аттенюатора 1 усиливаются усилителем 2 и детектируются в детекторе 3, с выхода которого (фиг. 2,е) они поступают в ограничитель 4. Уровень ограничения у него равен максимально возможному уровню подавленных помех от морской поверхности с учетом возможного изменения этих помех от одного периода повторения к другому. Сигналы помех от морской поверхности проходят через ограничитель 4 без искажений, а мощные сигналы целей ограничиваются. Сигналы с выхода ограничителя 4 (фиг. 2,ж) поступают на вход ключевой схемы 5, которая в исходном состоянии закрыта. Под действием импульса запуска, поступающего на вход синхронизатора 10, в нем вырабатывается первый импульс, соответствующий той части периода повторения, в которой действуют помехи от морской поверхности (фиг. 2,з). Этот импульс поступает на управляющий вход ключевой схемы 5, открывая ее для прохождения на ее выход сигналов помех от морской поверхности (фиг. 2,и). Эти сигналы поступают в дополнительный аттенюатор 6, на управляющий вход которого одновременно с выхода формирователя 9 импульса ВАРУ приходит импульс ВАРУ (фиг. 2,в). Под действием этого импульса коэффициент передачи дополнительного аттенюатора 6 меняется обратно пропорционально коэффициенту передачи аттенюатора 1. На выходе дополнительного аттенюатора 6 выделяются сигналы помех от морской поверхности (фиг. 2,к), амплитуда которых пропорциональна амплитуде сигналов этих помех на входе аттенюатора 1. Эти сигналы помех от морской поверхности поступают в интегратор 7 (напряжение на котором в исходном состоянии равно 0) и суммируются в нем (фиг. 2,л). В результате в интеграторе 7 выделяется напряжение, пропорциональное среднему значению помех от морской поверхности. После окончания первого импульса синхронизатор 10 вырабатывает второй импульс (фиг. 2,м), который с его выхода поступает на управляющий вход блока 8 памяти, обеспечивая в нем запись среднего значения помех от морской поверхности (принимаемых в данный период повторения), поступающего с выхода интегратора 7 на вход блока 8 памяти (фиг. 2,а). После окончания второго импульса в синхронизаторе 10 формируется третий импульс (фиг. 2,н), который поступает на управляющий вход интегратора 7, уменьшая напряжение на нем до нуля. При поступлении импульса запуска следующего периода повторения (фиг. 2,б) в формирователе 9 импульса ВАРУ формируется импульс ВАРУ, форма которого определяется напряжением, пропорциональным среднему значению помех от морской поверхности за данный период повторения. Цикл работы повторяется.

Так как помехи от морской поверхности от периода к периоду меняются незначительно, то погрешность в определении среднего значения также небольшая, и в предлагаемом устройстве ВАРУ осуществляется подавление помех от морской поверхности до уровня внутренних шумов приемника на всех азимутальных направлениях. Если вместе с сигналами помех от морской поверхности принимается мощный сигнал цели, то он поступает в интегратор 7 после ограничения в ограничителе 4, благодаря чему вносимая им погрешность в определение среднего значения помех небольшая.

Ограничитель 4 и ключевая схема 5 могут отсутствовать. При этом увеличится влияние сигналов целей на определение среднего значения помех в интеграторе 7. Так как обычно с данного азимутального направления принимаются сигналы от малого числа целей, то эта погрешность мала.

В предлагаемом устройстве ВАРУ для каждого азимутального направления производится подавление помех от морской поверхности до уровня внутренних шумов приемника. Поэтому на каждом азимутальном направлении приемник имеет максимальные чувствительность и помехозащищенность. Благодаря этапу повышается помехозащищенность и чувствительность ее приемника.

Устройство временной автоматической регулировки усиления (ВАРУ), содержащее последовательно включенные замкнутые в кольцо, первый аттенюатор, усилитель, детектор, ограничитель, ключ, интегратор, блок памяти и формирователь импульса ВАРУ, выход которого соединен с управляющим входом первого аттенюатора, а также синхронизатор, вход которого соединен с другим сигнальным входом формирователя импульса ВАРУ, а выходы соединены с управляющими входами блока памяти, интегратора и ключа, отличающееся тем, что, с целью повышения помехозащищенности, введен второй аттенюатор между выходом ключа и входом интегратора, причем управляющий вход второго аттенюатора соединен с выходом формирователя импульса ВАРУ.
система вару в конструкции рлс для чего предназначена. Смотреть фото система вару в конструкции рлс для чего предназначена. Смотреть картинку система вару в конструкции рлс для чего предназначена. Картинка про система вару в конструкции рлс для чего предназначена. Фото система вару в конструкции рлс для чего предназначена
система вару в конструкции рлс для чего предназначена. Смотреть фото система вару в конструкции рлс для чего предназначена. Смотреть картинку система вару в конструкции рлс для чего предназначена. Картинка про система вару в конструкции рлс для чего предназначена. Фото система вару в конструкции рлс для чего предназначена
система вару в конструкции рлс для чего предназначена. Смотреть фото система вару в конструкции рлс для чего предназначена. Смотреть картинку система вару в конструкции рлс для чего предназначена. Картинка про система вару в конструкции рлс для чего предназначена. Фото система вару в конструкции рлс для чего предназначена

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *