сигнальная земля что это
Сигнальное заземление
Заземление (earthing, grounding) представляет собой физическое присоединение нескольких цепей к общему потенциалу. Сигнальное заземление соответствует созданию точки общего нулевого потенциала для измерительных сигналов. Теоретически все точки, которые должны быть заземлены, присоединяются к этому нулевому потенциалу без каких-либо сопротивлений или индуктивностей. К сожалению, на практике это невыполнимо. Проблемы, связанные с низким качеством заземления, являются наиболее распространенными, и именно их труднее всего обнаружить.
Рис. 4. Простая измерительная схема с двумя заземлениями.
На рис. 4 представлена схема с источником напряжения vs, присоединенным к заземлению P1, и собственно измерительные устройства, присоединенные к заземлению Р2. Два отдельных заземления редко имеют одинаковый потенциал, поэтому между ними существует ток утечки. Вольтметр покажет не правильное значение напряжения vs, а искаженную величину vs + vg. В больших и сложных системах часто имеются отдельные заземления для датчиков, кабелей, компьютерного оборудования, силовых элементов и шасси аппаратуры. Все эти отдельные системы заземления должны быть присоединены к общей точке заземления, как это показано на рис. 5.
Раздельное заземление рекомендуется производить для релейных схем, двигателей и других устройств, которые потребляют большие токи. Наконец, шасси аппаратуры должны быть присоединены к отдельному заземлению, а это последнее — к общему заземлителю.
|
Проблемы, связанные с заземлением в контрольно-измерительных системах, можно обобщить в следующих правилах.
• Необходимо четко определить пути протекания тока. Токи, текущие от силового оборудования, должны возвращаться к тем же устройствам. Проводники, присоединенные к электрическим элементам, могут называться «землей», но в действительности функционировать как замкнутый контур и вызывать искажение напряжения или пиковые возмущения из-за импеданса кабелей. Следует применять провода соответствующего сечения как для силовых цепей, так и для цепей заземления.
• Цифровые и аналоговые цепи должны заземляться раздельно. Когда цифровая система изменяет свое логическое состояние, на «цифровом заземлении» могут появляться значительные всплески напряжения. Поскольку аналоговые цепи обычно очень чувствительны к возмущениям, то раздельное заземление снижает влияние резистивной связи.
Термин: Заземление сигнальное
В больших системах, состоящих из разнородных приборов (например, мощных исполнительных устройств и чувствительной измерительной аппаратуры), существует проблема взаимовлияния устройств по цепи заземления, приводящая к сбоям и помехам. Исходя из опыта борьбы с этим явлением был введён термин сигнальное заземление.
Сигнальное заземление – это «чистая» ветка основной цепи заземления системы, по которой не текут токи заземления сильнопотребляющих, исполнительных устройств (силовое оборудование, станки, мощные, высоковольтные, искрообразующие, импульсные устройства, тиристорные преобразователи и т.п.), а протекают токи заземления относительно чувствительных сигнальных устройств (измерительные приборы, аналоговые тракты), а также компьютеров. Сам термин сигнальное заземление возник по причине того, что в сложных системах соединение без разбора всех точек заземления разнородных приборов приводит к проблеме их совместимости и возникает необходимость выделения отдельной «чистой» ветки заземления. В особо сложных системах возможно выделение нескольких веток сигнального заземления с определенной иерархией.
Рассмотрим два характерных случая построения цепи сигнального заземления:
1. В идеальном случае, если сигнальная цепь (и контактирующая с ней цепь сигнального заземления) гальванически изолирована от земли со стороны оборудования, то физически «чистая» ветка сигнального заземления образуется только тогда, когда она имеет соединение с «грязной» веткой заземления только в одной точке А, при этом чем ближе будет точка А к заземляющему устройству (например, цепь заземления вводного электрощитка), тем эта точка будет «чище», поскольку близость к заземляющему устройству электрофизически означает «минимум помех относительно земли». Такое построение цепи сигнального заземления обеспечивает независимость токов цепей защитного и сигнального заземления в их контурах протекания.
2. В неидеальном случае, если сигнальная цепь и связанная с ней цепь сигнального заземления не изолирована от земли со стороны оборудования, а, например, имеет связь с землёй через цепь защитного заземления, то провода сигнального заземления от разного оборудования следует максимально коротко соединить в одной точке В проводами большого сечения (а лучше – с наибольшей площадью поверхности), что обеспечивает наименьший импеданс проводов для импульсных токов заземления, протекающих от силового оборудования. А «наименьший импеданс для протекающего тока» физически означает наименьшее напряжение помех между общими проводами сигнальных цепей соединённого оборудования, т.е. наименьшее напряжение помех, приложенных к входам оборудования относительно общих проводов этих входов.
Рассмотрим ещё один распространённый практический случай построения цепей заземления разнородного оборудования, расположенного в металлической стойке или шкафу, в котором расположены блоки (крейты, модули).Этот характерный случай является сочетанием рассмотренных выше случаев 1 и 2, поскольку, с одной стороны, металлическая конструкция всегда должна быть заземлена (по правилам электробезопасности), а значит, стойка (шкаф) должна иметь точку заземления. С другой стороны, в стойке (шкафу), как правило, имеются расположенные близко разнородные силовое оборудование и чувствительные сигнальные устройства. Эта сложная электрофизическая обстановка на уровне стойки (шкафа) объединяет случаи 1 и 2 в один: точки А и В должны сойтись в одной точке заземления стойки (шкафа), образовав разные ветки защитной и сигнальной земли внутри стойки (шкафа). – Такой принцип даст оптимальные условия обеспечения электромагнитной совместимости разнородного оборудования.
Справедливы оба варианта – с разделением земель и без.
Первый вариант стоит использовать при появлении постоянного фона на выходе усилителя (треск, шумы). Собственно, это один из рецептов избавления от него. В этом случае земли соединяются через резистор в параллель с конденсатором. Это может потребоваться как минимум по двум причинам: а) при использовании в усилителе «шумного» источника питания, и, следовательно, б) для уменьшения шумов приведённых ко входу, которые могут и будут присутствовать на выходе усилителя в виде фона. Причины нетривиальны, но потенциалы земель не согласовать, а можно лишь подфильтровать. Но об этом лучше расскажут знатоки.
Во втором случае можно использовать общую землю. Разделять не нужно, если не столкнулись с описанной проблемой.
Резистор на входе 100к устанавливается для того, чтобы вход был менее чувствителен к наводкам при не подключённом источнике сигнала (проще говоря, не висел в воздухе), плюс задаёт входное сопротивление усилителя. Конечно же, ток сигнала потечёт через него, но через конденсатор всё-равно попадёт на смещённый транзистор.
Земля в АСУ ТП
Сегодня поговорим о заземлении в АСУ ТП и промышленных системах, основными целями которой являются защита обслуживающего персонала и стабильной работы РСУ. Многие недопонимают тему заземления в промышленных системах, а ее неправильное подключение ведет к плохим последствиям, авариям и даже дорогостоящим простоям из-за нарушения и поломки оборудования. Помехи являются случайной величиной, детектировать которых очень сложно без спец аппаратуры.
Источники помех на шине Земля
Все помехи, воздействующие на кабели, датчики, исполнительные механизмы, контроллеры и металлические шкафы автоматики, в большинстве случаев протекают и по заземляющим проводникам, создавая паразитное электромагнитное поле вокруг них и падение напряжения помехи на проводниках.
Основные определения по теме «Общее заземление»
Заземление АСУ ТП принято подразделять на:
Цели заземления
Защитное заземление нужно для защиты людей от поражения электрическим током для оборудования с напряжением питания от 42 В переменного или от 110 В постоянного тока, за исключением взрывоопасных зон. Но в тоже время защитное заземление часто приводит к увеличению уровня помех в АСУ ТП.
Электрические сети с изолированной нейтралью используются для избежания перерывов питания потребителя при единственном повреждении изоляции, поскольку при пробое изоляции на землю в сетях с глухозаземлённой нейтралью срабатывает защита и питание сети прекращается.
Сигнальная земля служит для упрощения электрической схемы и удешевления устройств и систем промышленной автоматизации.
В зависимости от целей применения сигнальные земли можно разделить на базовые и экранные. Базовая земля используется для отсчёта и передачи сигнала в электронной цепи, а экранная земля используется для заземления экранов. Экранная земля используется для заземления экранов кабелей, экранирующих перегородок, корпусов приборов, а также для снятия статических зарядов с трущихся частей транспортёрных лент, ремней электроприводов.
Виды заземлений
Одним из путей ослабления вредного влияния цепей заземления на системы автоматизации является раздельное выполнение систем заземлений для устройств, имеющих разную чувствительность к помехам или являющихся источниками помех разной мощности. Раздельное исполнение заземляющих проводников позволяет выполнить их соединение с защитной землёй в одной точке. При этом разные системы земель представляют собой лучи звезды, центром которой является контакт к шине защитного заземления здания. Благодаря такой топологии помехи «грязной» земли не протекают по проводникам «чистой» земли. Таким образом, несмотря на то что системы заземления разделены и имеют разные названия, в конечном счёте все они соединены с Землёй через систему защитного заземления. Исключение составляет только «плавающая» земля.
Силовое заземление
В системах автоматизации могут использоваться электромагнитные реле, микромощные серводвигатели, электромагнитные клапаны и другие устройства, ток потребления которых существенно превышает ток потребления модулей ввода/вывода и контроллеров. Цепи питания таких устройств выполняют отдельной парой свитых проводов (для уменьшения излучаемых помех), один из которых соединяется с шиной защитного заземления. Общий провод такой системы (обычно провод, подключённый к отрицательному выводу источника питания) является силовой землёй.
Аналоговая и цифровая земля
Системы промышленной автоматизации являются аналого-цифровыми. Поэтому одним из источников погрешностей аналоговой части является помеха, создаваемая цифровой частью системы. Для исключения прохождения помех через цепи заземления цифровую и аналоговую землю выполняют в виде несвязанных проводников, соединённых вместе только в одной общей точке. Для этого модули ввода/вывода и промышленные контроллеры имеют отдельные выводы аналоговой земли (A.GND) и цифровой (D.GND).
«Плавающая» земля
«Плавающая» земля образуется в случае, когда общий провод небольшой части системы электрически не соединяется с шиной защитного заземления (то есть с Землёй). Типовыми примерами таких систем являются батарейные измерительные приборы, автоматика автомобиля, бортовые системы самолёта или космического корабля. Плавающая земля чаще используется в технике измерений малых сигналов и реже – в системах промышленной автоматизации.
Гальваническая развязка
Гальваническая развязка решает много проблем заземления, и её применение фактически стало стандартом в АСУ ТП. Для осуществления гальванической развязки (изоляции) необходимо выполнить подачу энергии развязывающим трансформатором и передачу сигнала в изолированную часть цепи через оптроны и трансформаторы, элементы с магнитной связью, конденсаторы или оптоволокно. В электрической цепи полностью устраняется путь, по которому возможна передача кондуктивной помехи.
В АСУТП заземление для гальванически связанных цепей сильно отличается от заземления развязанных цепей.
Заземление гальванически связанных цепей
Мы рекомендуем избегать применения гальванически связанных цепей, а если другого варианта нет, то желательно, чтобы размер этих цепей был по
возможности малым и чтобы они располагались в пределах одного шкафа.
Пример неправильного заземления источника и приёмника стандартного сигнала 0…5 В
Здесь допущены следующие ошибки:
Перечисленные ошибки приводят к тому, что напряжение на входе приёмника Vвх равно сумме напряжения сигала Vвых и напряжения помехи VЗемли= R1· (Iпит + IМ)
Для устранения этого недостатка в качестве проводника заземления можно использовать медную шину большого сечения, однако лучше выполнить заземление так, как показано ниже.
Пример правильного заземления источника и приёмника стандартного сигнала 0…5 В
Общим правилом ослабления связи через общий провод заземления является деление земель на аналоговую, цифровую, силовую и защитную с последующим их соединением только в одной точке.
При разделении заземлений гальванически связанных цепей используется общий принцип: цепи заземления с большим уровнем шума должны выполняться отдельно от цепей с малым уровнем шума, а соединяться они должны только в одной общей точке. Точек заземления может быть несколько, если топология такой цепи не приводит к появлению участков «грязной» земли в контуре, включающем источник и приёмник сигнала, а также если в цепи заземления не образуются замкнутые контуры, принимающие электромагнитные помехи.
Заземление гальванически развязанных цепей
Радикальным решением описанных проблем является применение гальванической изоляции с раздельным заземлением цифровой, аналоговой и силовой частей системы.
Силовая часть обычно заземляется через шину защитного заземления. Применение гальванической изоляции позволяет разделить аналоговую и цифровую землю, а это, в свою очередь, исключает протекание по аналоговой земле токов помехи от силовой и цифровой земли. Аналоговая земля может быть соединена с защитным заземлением через сопротивление RAGND.
Заземление экранов сигнальных кабелей в АСУ ТП
Пример неправильного (с двух сторон) заземления экрана кабеля на низких частотах, если частота помехи не превышает 1 МГц, то кабель надо заземлять с одной стороны, в противном случае образуется замкнутый контур, который будет работать как антенна.
Пример неправильного (со стороны приёмника сигнала) заземления экрана кабеля. Оплётку кабеля надо заземлять со стороны источника сигнала. Если заземление сделать со стороны приёмника, то ток помехи будет протекать через ёмкость между жилами кабеля, создавая на ней и, следовательно, между дифференциальными входами напряжение помехи.
Поэтому заземлять оплётку надо со стороны источника сигнала, в этом случае путь для прохождения тока помехи отсутствует.
Правильное заземление экрана (дополнительное заземление справа используется для случая высокочастотного сигнала). Если источник сигнала не заземлён (например, термопара), то заземлять экран можно с любой стороны, так как в этом случае замкнутый контур для тока помехи не образуется.
На частотах более 1 МГц увеличивается индуктивное сопротивление экрана, и токи ёмкостной наводки создают на нём большое падение напряжения, которое может передаваться на внутренние жилы через ёмкость между оплёткой и жилами. Кроме того, при длине кабеля, сравнимой с длиной волны помехи (длина волны помехи на частоте 1 МГц равна 300 м, на частоте 10 МГц – 30 м), возрастает сопротивление оплётки, что резко повышает напряжение помехи на оплётке. Поэтому на высоких частотах оплётку кабеля надо заземлять не только с обеих сторон, но и в нескольких точках между ними.
Эти точки выбирают на расстоянии 1/10 длины волны помехи одна от другой. При этом по оплётке кабеля будет протекать часть тока IЗемли, передающего помеху в центральную жилу через взаимную индуктивность.
Ёмкостный ток также будет протекать по пути, показанному на рис. 21, однако высокочастотная составляющая помехи будет ослаблена. Выбор количества точек заземления кабеля зависит от разницы напряжений помехи на концах экрана, частоты помехи, требований к защите от ударов молнии или от величины токов, протекающих через экран в случае его заземления.
В качестве промежуточного варианта можно использовать второе заземление экрана через ёмкость. При этом по высокой частоте экран получается заземлённым с двух сторон, по низкой частоте – с одной. Это имеет смысл в том случае, когда частота помехи превышает 1 МГц, а длина кабеля в 10…20 раз меньше длины волны помехи, то есть когда ещё не нужно выполнять заземление в нескольких промежуточных точках.
Внутренний экран заземляют с одной стороны — со стороны источника сигнала, чтобы исключить прохождение ёмкостной помехи по пути, показанному, а внешний экран уменьшает высокочастотные наводки. Во всех случаях экран должен быть изолирован, чтобы предотвратить его случайные контакты с металлическими предметами и землёй. Для передачи сигнала на большое расстояние или при повышенных требованиях к точности измерений нужно передавать сигнал в цифровой форме или ещё лучше через оптический кабель.
Заземление экранов кабелей систем автоматизации на электрических подстанциях
На электрических подстанциях на оплётке (экране) сигнального кабеля системы автоматизации, проложенного под высоковольтными проводами на уровне земли и заземлённого с одной стороны, может наводиться напряжение величиной в сотни вольт во время коммутации тока выключателем. Поэтому с целью электробезопасности оплётку кабеля заземляют с двух сторон. Для защиты от электромагнитных полей с частотой 50 Гц экран кабеля также заземляют с обеих сторон. Это оправданно в случаях, когда известно, что электромагнитная наводка с частотой 50 Гц больше, чем наводка, вызванная протеканием выравнивающего тока через оплётку.
Заземление экранов кабелей для защиты от молнии
Для защиты от магнитного поля молнии сигнальные кабели (с заземленным экраном) АСУ ТП, проходящие по открытой местности, должны быть проложены в металлических трубах из стали, так называемого магнитного экрана. Лучше под землей, иначе заземлять каждые 3 метра. Магнитное поле слабо влияет внутри здания из ж-бетона, в отличие от других материалов.
Заземление при дифференциальных измерениях
Если источник сигнала не имеет сопротивления на землю, то при дифференциальном измерении образуется «плавающий» вход. На «плавающем» входе может наводиться статический заряд от атмосферного электричества или входного тока утечки операционного усилителя. Для отвода заряда и тока на землю потенциальные входы модулей аналогового ввода обычно содержат внутри себя резисторы сопротивлением от 1 до 20 МОм, соединяющие аналоговые входы с землёй. Однако при большом уровне помех или большом импедансе источника сигнала даже сопротивление 20 МОм может оказаться недостаточным и тогда необходимо дополнительно использовать внешние резисторы номиналом от десятков кОм до 1 МОм или конденсаторы с таким же сопротивлением на частоте помехи.
Заземление интеллектуальных датчиков
Ныне широкое распространены так называемые интеллектуальные датчики с микроконтроллером внутри для линеаризации выхода с датчика, выдающие сигнал в цифровой или аналоговой форме. Вследствие того, что цифровая часть датчика совмещена с аналоговой, при неправильном заземлении выходной сигнал имеет повышенный уровень шума. Некоторые датчики имеют ЦАП с токовым выходом и поэтому требуют подключения внешнего сопротивления нагрузки порядка 20 кОм, поэтому полезный сигнал в них получается в форме напряжения, падающего на нагрузочном резисторе при протекании выходного тока датчика.
Неправильное заземление интеллектуальных датчиков:
Напряжение на нагрузке равно:
Vнагр = Vout – Iнагр · R1+ I2· R2,
то есть оно зависит от тока I2, который включает в себя ток цифровой земли. Ток цифровой земли содержит помеху и влияет на напряжение на нагрузке. Чтобы устранить этот эффект, цепи заземления надо выполнить так, как показано ниже. Тут ток цифровой земли не идет через сопротивление R21 и не вносит шум в сигнал на нагрузке.
Правильное заземление интеллектуальных датчиков:
Заземление шкафов с аппаратурой систем автоматизации
Вот пример (красным цветом выделены неправильные соединения; GND — вывод для подключения заземлённого вывода питания), в котором каждое отличие от следующего рисунка ухудшает вероятность сбоев цифровой части и повышает погрешность аналоговой. Здесь сделаны следующие «неправильные» соединения:
Перечисленные недостатки устранены на примере правильного заземления шкафов системы промышленной автоматизации:
Доп. плюсом разводки в этом примере было бы применение отдельного проводника заземления для наиболее чувствительных аналоговых модулей ввода. В пределах шкафа (стойки) желательно группировать аналоговые модули отдельно, цифровые – отдельно, чтобы при прокладке проводов в кабельном канале уменьшить длину участков параллельного прохождения цепей цифровой и аналоговой земель.
Заземление во взаимоудаленных системах управления
В системах управления, распределённых по некоторой территории с характерными размерами в десятки и сотни метров, нельзя использовать модули ввода без гальванической развязки. Только гальваническая развязка позволяет соединять цепи, заземлённые в точках с разными потенциалами. Наилучшим решением для передачи сигналов является оптоволокно и применение датчиков со встроенными в них АЦП и цифровым интерфейсом.
Заземление исполнительного оборудования и приводов АСУ ТП
Цепи питания двигателей с импульсным управлением, двигателей сервоприводов, исполнительных устройств с ШИМ управлением должны быть выполнены витой парой для уменьшения магнитного поля, а также экранированы для снижения электрической составляющей излучаемой помехи. Экран кабеля должен быть заземлён с одной стороны. Цепи подключения датчиков таких систем должны быть помещены в отдельный экран и по возможности пространственно отдалены от исполнительных устройств.
Заземление в промышленных сетях RS-485, Modbus
Промышленная сеть на основе интерфейса RS-485 выполняется экранированной витой парой с обязательным применением модулей гальванической развязки.
Для коротких отрезков (порядка 15 м) и при отсутствии поблизости источников шумов экран можно не использовать. На больших длинах порядка до 1,2км разница потенциалов земли в удалённых друг от друга точках может достигать нескольких десятков вольт. Чтобы предотвратить протекание по экрану тока, экран кабеля нужно заземлять только в ЛЮБОЙ одной точке. При использовании не экранированного кабеля на нём может наводиться большой статический заряд (несколько киловольт) за счёт атмосферного электричества, который способен вывести из строя элементы гальванической развязки. Для предотвращения этого эффекта изолированную часть устройства гальванической развязки следует заземлить через сопротивление, например 0,1. 1 МОм. Сопротивление, показанное штриховой линией, снижает также вероятность пробоя при повреждениях заземления или большом сопротивлении гальванической изоляции в случае применения экранированного кабеля. В сетях Ethernet с малой пропускной способностью (10 Mбит/с) заземление экрана следует выполнять только в одной точке. В Fast Ethernet (100 Мбит/с) и Gigabit Ethernet (1 Гбит/с) заземление экрана следует выполнять в нескольких точках.
Заземление на взрывоопасных промышленных объектах
На взрывоопасных объектах при монтаже заземления многожильным проводом не допускается применение пайки для спаивания жил между собой, поскольку вследствие хладотекучести припоя возможно ослабление мест контактного давления в винтовых зажимах.
Экран кабеля интерфейса RS-485 заземляется в одной точке вне взрывоопасной зоны. В пределах взрывоопасной зоны он должен быть защищён от случайного соприкосновения с заземлёнными проводниками. Искробезопасные цепи не должны заземляться, если этого не требуют условия работы электрооборудования (ГОСТ Р 51330.10, п6.3.5.2). И должны быть смонтированы таким образом, чтобы наводки от внешних электромагнитных полей (например, от расположенного на крыше здания радиопередатчика, от воздушных линий электропередачи или близлежащих кабелей для передачи большой мощности) не создавали опасного напряжения или тока в искробезопасных цепях. Это может быть достигнуто экранированием или удалением искробезопасных цепей от источника электромагнитной наводки.
При прокладке в общем пучке или канале кабели с искроопасными и искробезопасными цепями должны быть разделены промежуточным слоем изоляционного материала или заземлённой металлической перегородкой. Никакого разделения не требуется, если используются кабели с металлической оболочкой или экраном. Заземлённые металлические конструкции не должны иметь разрывов и плохих контактов между собой, которые могут искрить во время грозы или при коммутации мощного оборудования. На взрывоопасных промышленных объектах используются преимущественно электрические распределительные сети с изолированной нейтралью, чтобы исключить возможность появления искры при коротком замыкании фазы на землю и срабатывания предохранителей защиты при повреждении изоляции. Для защиты от статического электричества используют заземление, описанное в соответствующем разделе. Статическое электричество может быть причиной воспламенения взрывоопасной смеси.