серый скоринг что это

Скоринг «серой зоны»

«Банковское обозрение. Приложение «BEST PRACTICE», 2015, N 2

Сейчас, когда уменьшаются как кредитные портфели банков, так и уровень платежеспособности клиентов, скоринговые системы особенно нуждаются в инновациях. Доля просроченных кредитов в апреле 2015 г. составила 17,43% от общего количества активных кредитов, а следовательно, заемщиков с неоднозначной кредитной историей, ухудшенной информацией о просроченных долговых обязательствах также стало больше. Как кредитной организации разобраться в нюансах «серой зоны» заемщиков? Какие данные необходимы для усовершенствования скоринговых систем? Попробуем разобраться.

Кого банкиры называют клиентами «серой зоны»?

Для принятия решения по клиентам «белой» и «черной» зон кредиторам обычно хватает стандартного объема проверяемой скоринговыми системами информации: данных кредитных бюро, государственных информационных систем, сведений, получаемых от работодателя и из социальных сетей. Заемщики «белой зоны» любимы банками: они вносят платежи по кредитам согласно графику и срокам, за ними длинной вереницей ходят кредиторы, но не с претензиями, а с предложениями взять еще один кредит по более низкой ставке.

Где начинается «серая зона»?

Как провести границы зон?

Какая дополнительная информация необходима банкам при анализе истории клиента?

В последнее время большую роль играет человеческий фактор, кредитная организация ищет ответы на следующие вопросы:

Эти вопросы относятся к анализу поведенческой активности заемщика с просроченной задолженностью и имеют огромное значение при оценке его возможности и дальше брать на себя кредитные обязательства. Демографические данные (пол, возраст, семейное положение, место работы и должность) и сведения о регулярном доходе клиента также играют не последнюю роль, но зачастую дать представление о репутации заемщика может только анализ его поведения и личных качеств.

Как информация такого рода может изменить методы скоринга?

Объем «серой зоны» до и после применения технологии анализа поведенческой активности заемщика

Также скоринг «серой зоны» с учетом анализа поведения заемщиков позволит банку вести более умелую кредитную политику. «Серая зона» будет сужаться: выделив сегменты заемщиков с различным уровнем риска, банк может кредитовать условно почти всех, но на разных условиях (чем выше риск, тем больше процентная ставка).

Могут ли данные о поведении заемщика во время просрочки вывести его из «серой зоны» обратно в «белую» и позволить дальше свободно получать кредиты?

Источник

Сбербанк рассекретил свой метод оценки клиентов

Как стало известно «Октагону», Сбербанк решил запатентовать свою новую систему оценки клиентов. Она опубликована в июньском официальном бюллетене Роспатента «Изобретения. Полезные модели». Хитрость системы в том, что для выдачи кредита госбанку больше не нужны информация из бюро кредитных историй и анкетные данные клиента. Чтобы клиент получил необходимые скоринговые баллы, ему достаточно пользоваться любой картой банка.

Своя система оценки клиентов (скоринг) есть у любой кредитной организации. Такие системы разрабатываются с середины XX века, в них инвестированы миллионы долларов. Традиционные кредитно-скоринговые модели основываются на данных анкеты, кредитной истории и другой агрегированной финансовой информации, относящейся к заявке клиента. Это, в частности, данные справок из налоговой службы об официальных доходах (2-НДФЛ) или выписок из Росреестра.

Исходя из этой информации банк выставляет каждому клиенту определённый скоринговый балл, по которому принимает решение, будет выдан кредит или нет. Портрет идеального заёмщика примерно одинаков для всех банков: женщины, семейные, люди старше 40 лет, клиенты с высшим образованием и с хорошим стажем работы платят лучше остальных заёмщиков. Для клиента, который хоть немного выбивается из идеального портрета, получить крупный кредит сложнее – банк будет требовать дополнительные гарантий его возврата. Например, привлечь созаёмщика или найти хороший ликвидный залог.

Новая система, которую Сбербанк не только использует, но и решил запатентовать, кардинально отличается от традиционного подхода банков. Она делает ставку на изучение банковских транзакций, а не кредитной истории клиента.

По мнению банкиров, информация о том, где, когда и за что клиент расплачивается банковской картой больше говорит о его благонадёжности, чем кредитная история и другие факторы, используемые для традиционного скоринга.

Кроме того, такой метод не требует от клиента ввода каких-либо дополнительных данных, значит, решение по кредиту принимается быстрее (весь процесс будет автоматизирован), и сведения очень сложно подделать.

Следовательно, нет необходимости проверять правильность информации, в отличие от анкеты на получение кредита и некоторых других источников, используемых для оценки. И главное, этот метод работает, даже если у клиента нет кредитной истории.

серый скоринг что это. Смотреть фото серый скоринг что это. Смотреть картинку серый скоринг что это. Картинка про серый скоринг что это. Фото серый скоринг что это

Как утверждается в заявке к патенту, новую систему банк построил, изучив более 200 миллионов транзакций 740 тысяч клиентов. В качестве целевой переменной использовалось событие дефолта для потребительского кредита в течение года после его выдачи. В итоге были получены профили клиентов с наиболее высоким риском невыплаты кредита и профили самых благонадёжных заёмщиков. В настоящее время, согласно заявке, в качестве исходных данных используются уровень транзакции (метка времени, страна, сумма, тип продавца) и уровень карты (филиал выдачи, тип карты).

В результате портрет идеального заёмщика получается несколько иным, чем при традиционном скоринге. Неважно, сколько вам лет и каков ваш стаж работы, но если вы регулярно оставляете значительные средства в ресторанах и путешествуете по миру, то вы получите достаточный балл для выдачи кредита. Как отмечается в документах, для полного анализа клиенту достаточно сделать порядка 350 транзакций.

– Реальные транзакции по дебетовой или кредитной карте действительно могут сказать о клиенте больше, чем сухие цифры из 2-НДФЛ или анкетные данные, – отмечает ведущий эксперт академии финансовой грамотности Александр Николаев. – Во-первых, объём трат клиента по картам даёт возможность банку оценить его реальные доходы. Многие, чтобы получать кешбэк по картам, вносят «серую» часть зарплаты на банковские счета. А структура затрат показывает привычки клиента и то, хватает ли ему получаемого дохода на жизнь.

Одно дело, когда весь свой доход он тратит на продукты в «Пятёрочке», и совсем другое – если на продукты он тратит не более 20 процентов своего дохода и обслуживается в магазинах классом повыше.

Кроме того, по транзакциям клиента сразу видно, что у него находится в собственности: есть ли автомобиль, есть ли квартира или свой дом, что также влияет на итоговое решение банка.

серый скоринг что это. Смотреть фото серый скоринг что это. Смотреть картинку серый скоринг что это. Картинка про серый скоринг что это. Фото серый скоринг что это

Новые возможности для реальной оценки клиентов банки ищут уже давно. В 2017 году тот же Сбербанк объявил о внедрении скоринга по психометрическим моделям: в госбанке намеревались внедрить практику проверки платёжеспособности и надёжности клиента по социальным сетям, анализируя посты и фотографии. И если, например, клиент в своём профиле выражает приверженность тюремной романтике, то шансы на одобрение кредита снижались.

«Если человек лайкает тюремные чётки и “Владимирский централ”, то вряд ли ему надо сразу одобрять кредит, скорее всего, ещё раз надо что-нибудь посмотреть».

серый скоринг что это. Смотреть фото серый скоринг что это. Смотреть картинку серый скоринг что это. Картинка про серый скоринг что это. Фото серый скоринг что этоАлександр Ведяхин
первый зампред правления Сбербанка

Позже о включении «цифрового следа» в скоринговые модели объявляли и другие банки. Впрочем, вскоре банкиры признали, что данные из социальных сетей не стали самостоятельным фактором для принятия решений: банки используют их как дополнительную информацию о клиенте и то не всегда.

В условиях карантина и дистанционного обслуживания ряд российских банков также задумались изменить подход к изучению платёжеспособности клиента, включив в анализ психологическое тестирование. О возможности внедрения «скоринга по эмоциям» объявил «Альфа-Банк», в тестовом режиме психологическое тестирование клиентов проводит «Абсолют Банк».

Чья скоринговая система окажется сильнее, покажет отчётность.

Источник

Технология отказа

Вопрос, выдаст банк вам кредит или откажет, очень непрост. За его решением стоит кропотливая дорогостоящая работа. Все больше банков стремятся удешевить и ускорить свой скоринг, автоматизировав его. О том, как проводится такой скоринг, порталу Банки.ру рассказали специалисты компании Experian.

Компьютер не позвонит

Скоринговые системы, построенные на таких платформах как PowerCurve компании Experian, призваны не заменить живого работника, а помочь ему быстро и правильно принимать решения на всех этапах жизненного цикла клиента банка. Принципы, в соответствии с которыми работают автоматические системы, по сути, не отличаются от принципов ручного скоринга.

Упрощенно процесс можно описать как применение скоринговой модели к собранным данным. Цель проведения скоринга – предсказать, как заемщик будет выплачивать кредит. Это дает возможность применить к скоринговым оценкам заявителя рисковую стратегию и принять ряд решений по его заявке: дать ли кредит, в каком объеме, на какой срок, под какую ставку.

«Процент решений, принимаемых банками полностью автоматически, пока не очень велик. Проблема в том, что банки не вполне доверяют автоматическим системам. Кроме того, не все данные можно проверить без привлечения человека. Например, компьютер не позвонит на работу заявителю. Поэтому полностью автоматические решения принимаются обычно по заявкам на небольшие кредиты», – рассказала порталу Банки.ру глобальный консультант компании Experian Анна Уштей.

Все, что вы хотели знать о клиенте

Идентификационные данные. Набор информации, позволяющий идентифицировать заемщика: паспортные данные, место жительства, фотография, подпись, рабочий и домашний телефоны. Именно с обработки этих данных начинается скоринг. Это позволяет на самом раннем этапе отсеять возможных мошенников и явно неперспективных клиентов. При этом, если клиент уже является клиентом банка, проверка и обработка этих данных обойдется банку крайне дешево и может быть практически полностью автоматизирована. Идентификационные данные практически не меняются со временем. Заметим, что даже непреднамеренная ошибка при указании идентификационных данных, скорее всего, приведет к отказу в кредите.

Демографические данные. Возраст, пол, образование, семейное положение, место проживания, место работы и должность. В отличие от идентификационных данных демографические со временем меняются: увеличивается возраст, человек учится, переезжает, меняет работу, женится, разводится и т. д. Может измениться даже пол.

Финансовые положение. Наличие и размер регулярного дохода, объем трат, наличие иждивенцев. Тут для заявителей имеется широкое поле для разного рода хитростей: траты можно скрыть и доход преувеличить. Эти данные меняются постоянно, в связи с чем банки вынуждены уделять их сбору и проверке самое пристальное внимание.

Кредитная история. Возможно, самые ценные для скоринга данные – наличие отданных и текущих кредитов, случаи попадания в просрочку и ее продолжительность. Если человек многие годы аккуратно выплачивал кредиты, можно с большой долей вероятности предположить, что он и продолжит в том же духе. Обратное тоже верно.

Трансакционное поведение. Такого рода данные доступны банку, если речь идет о выдаче кредита не человеку «с улицы», а держателю платежной карты банка. Имеют значение регулярность и характер операций по карте – как часто, где, в каком объеме заявитель оплачивает товары и услуги. Заметим, что банк оперирует не конкретными товарами и услугами, и даже не названиями магазинов, а суммами и категорией торговой точки.

Данные, предоставляемые самим заемщиком, подвергаются верификации. Для этого применяются как внешние источники, так и проверки на внутренние противоречия. Есть четкие, поддающиеся проверке связи между местом проживания и работы, профессией, должностью и уровнем дохода и т. д. Непротиворечивость этих данных можно проверить автоматически, не тратя дорогое рабочее время кредитного специалиста.

Моделируем будущее

При анализе статистики могут выявиться самые различные, зачастую неожиданные связи между просрочкой и данными о заемщиках. К примеру, работники, занятые в какой-либо одной отрасли, могут оказаться более склонны к просрочкам, нежели занятые в другой сфере. Или многодетные матери окажутся более качественными заемщиками, чем холостые мужчины. Такие связи и выводы из них зависят от профиля банка, от экономической, демографической и политической обстановки, они могут сильно изменяться во времени, в связи с чем скоринговая модель должна регулярно пересчитываться. Обычно это делается не реже чем раз в полгода.

Если кредитная организация только выходит на рынок или радикально меняет профиль, наработанной статистики у нее нет. В этом случае она может приобрести готовую модель или заказать сторонней компании разработку модели для своего профиля. В большинстве случаев такие модели работают не слишком эффективно, и через какое-то время их необходимо обновить, основываясь на собранной статистике.

Отметим, что скоринговую модель нередко дополняют настраиваемыми вручную условиями и фильтрами. Хорошо известно, что банки с предубеждением относятся к журналистам и юристам, даже если статистика не выявляет повышенного процента просрочки у представителей этих профессий. Первые способны попортить репутацию банка, а вторые могут доставить проблем в суде. Что интересно, сами сотрудники финансового сектора также нередко попадают в эти фильтры.

Стратегия серой зоны

Стратегия определяет, какой процент заявок в серой зоне получит положительное решение, причем стратегия должна учитывать самые разные факторы. Скажем, в ней можно прописать, что замужние учительницы младших классов, чей балл попал в серую зону, должны получать одобрение заявки в 50% случаев, объем кредита не должен превышать 100 тыс. рублей в 80% случаев, а срок кредит не должен быть менее пяти лет в 100% случаев.

Такие тонкие настройки позволяют кредитной организации формировать свой портфель очень точно и аккуратно. И средства автоматизации могут здорово облегчить формирование корректной стратегии.

«В системе PoweCurve я могу разобрать стратегию по нескольким сегментам клиентов, похожих друг на друга по каким-либо критериям, – рассказал порталу Банки.ру глава представительства Experian в России и странах СНГ Сергей Горащенко. – Одним, к примеру, задаем увеличение лимита, другим – поднять ставку, но не менять лимит, третьим – снизить лимит, и установим запуск этой стратегии по определенной части портфеля или по всему портфелю. Применяем стратегию в PowerCurve, система все просчитывает и выдает сотрудникам банка данные, что с каким клиентом нужно делать, что поменять, какие действия предпринять».

Такие системы, как PowerCurve от Experian, позволяют риск-менеджеру сформировать желаемую стратегию в считаные минуты и проверить ее на статистике по кредитному портфелю. После расчетов система покажет тот уровень просрочки, на который вышел бы кредитный портфель, если бы тестируемая стратегия была применена в заданный период. Можно подойти и с другой стороны: задать желаемый уровень просрочки, и система предложит стратегию, основываясь на статистике за заданный период.

Увы, полностью положиться на автоматику тут не выйдет: если новая стратегия существенно отличается от действующей, нужной информации просто может не оказаться. К примеру, если банк практически не давал кредитов престарелым индивидуальным предпринимателям, а в новой стратегии им должно найтись место в кредитном портфеле, PowerCurve не сможет предсказать просрочку с достаточным уровнем точности. Ведь статистики по таким заемщикам у банка нет.

Заметим, что стратегия может включать в себя выдачу кредитов в черной зоне – то есть заявителям, для которых скоринговая модель показывает высокую вероятность попадания в просрочку. Небольшой процент одобрений «черных» заявок позволяет составить статистику по маргинальным заявителям, что помогает уточнять как скоринговую модель, так и стратегию.

Всем, кто на этой неделе забронирует место в группе, «Клерк» подарит месяц безлимитных консультаций, чтобы было легче учиться на потоке.

Покажите директору, на что вы способны. Записаться и получить подарок

Источник

При скоринге «серых» заемщиков финансовый рынок станет более адекватным

Решения банка, связанные с одобрением или отказом по заявке на получение потребительского кредита, на самом деле являются дорогостоящей и кропотливой работой.

На протяжении нескольких последних лет банки стремятся к автоматизации скорингового процесса посредством внедрения готовых или разработки собственных скоринговых систем. Нередко им удавалось вполне совершенные системы. Но как быть сегодня, когда после серьезного спада уровня платежеспособности розничных клиентов в системах стали происходить сбои – «неуправляемые сходы с орбит» – а банки стали чаще отказывать клиентам, которые вышли из зоны комфортного одобрения в так называемую серую зону? Каких данных не хватает дополнительно для насыщения этих систем, чтобы они снова стали более лояльны и процент одобрения заявок пошел вверх, но при этом чтобы банкам оставались свойственны точность и избирательность в их дальнейшей разработке? Попробуем понять нюансы отбора банками «серых» заемщиков.

Когда банкиры говорят о клиентах так называемой «серой зоны», они имеют в виду тех физических лиц, чьи кредитные истории нельзя назвать однозначными, когда банк может принять моментальное решение: дать отказ в получении кредита или одобрение. В принятии решения по клиентам «белой» и «черной» зон раньше кредиторам было достаточно стандартных объемов информации, подлежащей проверке скоринговыми системами: сведений из кредитных бюро, государственных инфосистем, данных, которые предоставлял работодатели и социальные сети. Заемщиков «белой зоны» банки любят; так как они своевременно вносят платежи по кредитам, не отклоняясь от графика и срока, за ними буквально ходят кредиторы, но не за тем, чтобы предъявить претензии, а, чтобы предложить взять еще один кредит с пониженной ставкой. А как ведут себя заемщики «серой зоны»? Первое время они тоже стараются добросовестно выполнять взятые на себя обязательства по кредиту. Далее по каким-то причинам, может, связанным с потерей работы или ухудшением финансового положения семьи, клиент прекращает совершать выплаты долга по кредиту и быстро оказывается в так называемой «просрочке». У одного физлица может быть до нескольких «просроченных» кредитов, а сроки просроченной задолженности могут разниться: это и 30, и 60, и 90 дней и даже больше. Если заемщик выходит на «просрочку» 90+, его первые кредиторы (те, кто предоставлял крупные кредиты под маленький процент) уже вряд ли в дальнейшем выдадут ему кредит на тех же условиях. Ведь такой заемщик пополнит собою «серую зону», и банк потратит немало сил и времени, чтобы в итоге решить, предоставить ему кредит или не рисковать?

Впрочем, проведение границ зон и определение, кто считается «хорошим», а кто «плохим» заемщиком, зависит от банковской политики и его общей стратегии. Как правило, кредитные организации сами определяются с желаемой доходностью своего кредитного портфеля, устанавливая тот уровень риска, который они могут принять. В текущем экономическом положении все больше банков и МФО выражают готовность пойти навстречу клиентам с применением более гибкого подхода к вопросу о предоставлении кредита. Они не торопятся с выдачей займов в пользу «непроверенных» клиентов, но при этом нацелены на сужение «серой зоны». Анализ кредитной истории клиента требует от банков владения необходимой дополнительной информацией, которую им пока негде взять. Банк хотел бы знать, не скрывался ли человек от контакта с кредитором, отзывался ли на звонки от кредитора, не серый скоринг что это. Смотреть фото серый скоринг что это. Смотреть картинку серый скоринг что это. Картинка про серый скоринг что это. Фото серый скоринг что этообещал ли выплату долга в такой-то отрезок времени, а если обещал, то смог ли вовремя выполнить?

Эти вопросы относятся являются частью анализа поведенческой активности заемщика, имеющего просроченную задолженность и их значение при оценке его перспектив и дальше брать на себя обязательства по кредиту чрезвычайно высоко. Информация чисто демографического характера (о половой принадлежности, возрасте, семейном положении, месте работы и должности) и сведения о регулярных доходах клиента также весьма значима, но порой четко представить репутацию заемщика можно только проанализировав его поведение и личные качества. Разумеется, рынку нужна такая информация, ее наличие может в лучшую сторону отразиться на методах скоринга. Если подобная система анализа поведенческой активности заемщиков будет внедрена, банк существенно сократит расходы на риск-менеджмент – большее количество обработанных заявок могут быть одобрены при этом не ухудшится качество кредитного портфеля. Комплекс этих поведенческих характеристик может, допустим, предоставить компания «Финкарта», машиночитаемые отчеты системы дополнят кредитные заявки важными дополнительными сведениями и придаст решению еще большую очевидность, а следовательно – банк не потеряет клиентов, которые незаслуженно получили отказ в выдаче кредита.

Скоринг «серой зоны», учитывающий анализ поведения заемщиков поможет банкам или другим кредитным организациям в ведении более умелой кредитной политики. «Серую зону» ждет неизбежное сужение: выделятся сегменты заемщиков, имеющих различные уровни риска, условно банк сможет предоставлять кредиты почти всем, но на разных условиях (высокий риск – гарантия более высокой процентной ставки).

Тут вполне уместно спросить – а сможет ли информация о поведении заемщика во время «просрочки» способствовать его выводу из «серой зоны» в «белую», благодаря чему он дальше будет беспрепятственно получать кредиты? Конечно, это возможно. Но стоит признать вероятность и обратной ситуации. Банк получит информацию о поведенческих особенностях заемщика, и она испортит впечатление о б этом человеке, но во всяком случае в целом оно, будет адекватным. Адекватность, наличие дополнительных данных – это как раз то, что в чем сегодня заинтересован кредитный рынок – банки нуждаются в гарантиях, более точных оценках, проверенных сведениях о платежеспособности и дисциплинированности того или иного клиента.

Источник

Технология отказа

серый скоринг что это. Смотреть фото серый скоринг что это. Смотреть картинку серый скоринг что это. Картинка про серый скоринг что это. Фото серый скоринг что это

Вопрос, выдаст банк вам кредит или откажет, очень непрост. За его решением стоит кропотливая дорогостоящая работа. Все больше банков стремятся удешевить и ускорить свой скоринг, автоматизировав его. О том, как проводится такой скоринг, порталу Банки.ру рассказали специалисты компании Experian.

Компьютер не позвонит

Анализ кредитных заявок – процесс, который можно и нужно автоматизировать. Классический, ручной скоринг крайне затратен, так как требует тщательной проверки и обучения сотрудников, и времени на каждую заявку тратится достаточно много. В то же время автоматическая система способна за секунды обработать большой объем данных, не подвержена предубеждениям и переменам настроения.

Скоринговые системы, построенные на таких платформах как PowerCurve компании Experian, призваны не заменить живого работника, а помочь ему быстро и правильно принимать решения на всех этапах жизненного цикла клиента банка. Принципы, в соответствии с которыми работают автоматические системы, по сути, не отличаются от принципов ручного скоринга.

Упрощенно процесс можно описать как применение скоринговой модели к собранным данным. Цель проведения скоринга – предсказать, как заемщик будет выплачивать кредит. Это дает возможность применить к скоринговым оценкам заявителя рисковую стратегию и принять ряд решений по его заявке: дать ли кредит, в каком объеме, на какой срок, под какую ставку.

«Процент решений, принимаемых банками полностью автоматически, пока не очень велик. Проблема в том, что банки не вполне доверяют автоматическим системам. Кроме того, не все данные можно проверить без привлечения человека. Например, компьютер не позвонит на работу заявителю. Поэтому полностью автоматические решения принимаются обычно по заявкам на небольшие кредиты», – рассказала порталу Банки.ру глобальный консультант компании Experian Анна Уштей.

Все, что вы хотели знать о клиенте

Банки стараются собрать о клиенте как можно больше информации, используя различные источники. Помимо данных, предоставляемых самим заявителем, используются информация кредитных бюро (в первую очередь, кредитная история), государственные информационные системы, открытая информация из соцсетей, внешние проверки (например, звонок работодателю). Анализируемые в процессе скоринга данные можно условно разделить на несколько категорий.

Идентификационные данные. Набор информации, позволяющий идентифицировать заемщика: паспортные данные, место жительства, фотография, подпись, рабочий и домашний телефоны. Именно с обработки этих данных начинается скоринг. Это позволяет на самом раннем этапе отсеять возможных мошенников и явно неперспективных клиентов. При этом, если клиент уже является клиентом банка, проверка и обработка этих данных обойдется банку крайне дешево и может быть практически полностью автоматизирована. Идентификационные данные практически не меняются со временем. Заметим, что даже непреднамеренная ошибка при указании идентификационных данных, скорее всего, приведет к отказу в кредите.

Демографические данные. Возраст, пол, образование, семейное положение, место проживания, место работы и должность. В отличие от идентификационных данных демографические со временем меняются: увеличивается возраст, человек учится, переезжает, меняет работу, женится, разводится и т. д. Может измениться даже пол.

Финансовые положение. Наличие и размер регулярного дохода, объем трат, наличие иждивенцев. Тут для заявителей имеется широкое поле для разного рода хитростей: траты можно скрыть и доход преувеличить. Эти данные меняются постоянно, в связи с чем банки вынуждены уделять их сбору и проверке самое пристальное внимание.

Кредитная история. Возможно, самые ценные для скоринга данные – наличие отданных и текущих кредитов, случаи попадания в просрочку и ее продолжительность. Если человек многие годы аккуратно выплачивал кредиты, можно с большой долей вероятности предположить, что он и продолжит в том же духе. Обратное тоже верно.

Трансакционное поведение. Такого рода данные доступны банку, если речь идет о выдаче кредита не человеку «с улицы», а держателю платежной карты банка. Имеют значение регулярность и характер операций по карте – как часто, где, в каком объеме заявитель оплачивает товары и услуги. Заметим, что банк оперирует не конкретными товарами и услугами, и даже не названиями магазинов, а суммами и категорией торговой точки.

Данные, предоставляемые самим заемщиком, подвергаются верификации. Для этого применяются как внешние источники, так и проверки на внутренние противоречия. Есть четкие, поддающиеся проверке связи между местом проживания и работы, профессией, должностью и уровнем дохода и т. д. Непротиворечивость этих данных можно проверить автоматически, не тратя дорогое рабочее время кредитного специалиста.

Моделируем будущее

Скоринговая модель – ценнейший актив банка. Именно она определяет, какую оценку (скоринговый балл) получит клиент на всех этапах скоринга. В простейшем случае скоринговую модель можно «набросать» и вручную. Но значительно более эффективным путем будет построение модели на основе собранной статистики по заявкам и выданным кредитам.

При анализе статистики могут выявиться самые различные, зачастую неожиданные связи между просрочкой и данными о заемщиках. К примеру, работники, занятые в какой-либо одной отрасли, могут оказаться более склонны к просрочкам, нежели занятые в другой сфере. Или многодетные матери окажутся более качественными заемщиками, чем холостые мужчины. Такие связи и выводы из них зависят от профиля банка, от экономической, демографической и политической обстановки, они могут сильно изменяться во времени, в связи с чем скоринговая модель должна регулярно пересчитываться. Обычно это делается не реже чем раз в полгода.

Если кредитная организация только выходит на рынок или радикально меняет профиль, наработанной статистики у нее нет. В этом случае она может приобрести готовую модель или заказать сторонней компании разработку модели для своего профиля. В большинстве случаев такие модели работают не слишком эффективно, и через какое-то время их необходимо обновить, основываясь на собранной статистике.

Отметим, что скоринговую модель нередко дополняют настраиваемыми вручную условиями и фильтрами. Хорошо известно, что банки с предубеждением относятся к журналистам и юристам, даже если статистика не выявляет повышенного процента просрочки у представителей этих профессий. Первые способны попортить репутацию банка, а вторые могут доставить проблем в суде. Что интересно, сами сотрудники финансового сектора также нередко попадают в эти фильтры.

Стратегия серой зоны

Как именно скоринговые баллы влияют на решения, принимаемые на всех этапах обработки заявки на кредит, определяет рисковая стратегия. Шкала скорингового балла условно делится на три зоны: белую, черную, серую. Попадание оценки в белую зону гарантирует положительное решение, черную – отрицательное, а вот серая зона дает определенный простор для маневра.

Стратегия определяет, какой процент заявок в серой зоне получит положительное решение, причем стратегия должна учитывать самые разные факторы. Скажем, в ней можно прописать, что замужние учительницы младших классов, чей балл попал в серую зону, должны получать одобрение заявки в 50% случаев, объем кредита не должен превышать 100 тыс. рублей в 80% случаев, а срок кредит не должен быть менее пяти лет в 100% случаев.

Такие тонкие настройки позволяют кредитной организации формировать свой портфель очень точно и аккуратно. И средства автоматизации могут здорово облегчить формирование корректной стратегии.

«В системе PoweCurve я могу разобрать стратегию по нескольким сегментам клиентов, похожих друг на друга по каким-либо критериям, – рассказал порталу Банки.ру глава представительства Experian в России и странах СНГ Сергей Горащенко. – Одним, к примеру, задаем увеличение лимита, другим – поднять ставку, но не менять лимит, третьим – снизить лимит, и установим запуск этой стратегии по определенной части портфеля или по всему портфелю. Применяем стратегию в PowerCurve, система все просчитывает и выдает сотрудникам банка данные, что с каким клиентом нужно делать, что поменять, какие действия предпринять».

Такие системы, как PowerCurve от Experian, позволяют риск-менеджеру сформировать желаемую стратегию в считаные минуты и проверить ее на статистике по кредитному портфелю. После расчетов система покажет тот уровень просрочки, на который вышел бы кредитный портфель, если бы тестируемая стратегия была применена в заданный период. Можно подойти и с другой стороны: задать желаемый уровень просрочки, и система предложит стратегию, основываясь на статистике за заданный период.

Увы, полностью положиться на автоматику тут не выйдет: если новая стратегия существенно отличается от действующей, нужной информации просто может не оказаться. К примеру, если банк практически не давал кредитов престарелым индивидуальным предпринимателям, а в новой стратегии им должно найтись место в кредитном портфеле, PowerCurve не сможет предсказать просрочку с достаточным уровнем точности. Ведь статистики по таким заемщикам у банка нет.

Заметим, что стратегия может включать в себя выдачу кредитов в черной зоне – то есть заявителям, для которых скоринговая модель показывает высокую вероятность попадания в просрочку. Небольшой процент одобрений «черных» заявок позволяет составить статистику по маргинальным заявителям, что помогает уточнять как скоринговую модель, так и стратегию.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *