сегмент целевой аудитории что это
Сегментация целевой аудитории
Для многих предпринимателей сегментация целевой аудитории выглядит так: вы рекламируете товар, а в голове сидит образ Идеального Покупателя. Он лоялен, щедр и не задает вопросов. Как принц на белом коне, только покупатель. Когда дело доходит до сегментации целевой аудитории (далее ЦА), вы ориентируетесь на этого покупателя и… ничего не происходит. Потому что Идеального Покупателя, как и принцев и драконов не существует.
Это плохая новость.
Хорошая – если вы уделите достаточно времени и сил для исследования, кто на самом деле ваша ЦА, то останетесь в выигрыше. В этой статье расскажем, как правильно определить того-самого-покупателя.
Что такое сегментация целевой аудитории и для чего используется
Сегментирование целевой аудитории – это разделение аудитории на группы, где они объединены по признаку схожих потребностей (запросов). «Википедия» пишет, что сегментирование ЦА – это «критически важный аспект маркетинга» и это правда.Сегментация целевой аудитории и рынка важны в интернет-продвижении и продвижении в социальных сетях. Инструменты, которые используют для сегментирования, делят аудиторию на группы и позволяют послать наиболее отдельное рекламное сообщение каждой конкретной группе, в зависимости от предпочтений пользователей, а не внутренних ощущений рекламодателя. При одинаковых затратах на рекламу эффективность сегментированной кампании будет выше.
Узнав ЦА в лицо и правильно проведя сегментирование, вы:
Целевая аудитория и сегментация в B2B и B2C
Главное отличие B2B от B2C – влияние лидеров рынка на формирование стратегии. Для потенциального клиента B2B важны такие показатели, как стабильность компании на рынке, надежность, исполнительность, строгое соблюдение сроков. Также в этом сегменте большое внимание уделяется выбору таргетированных (целевых) каналов коммуникации. Скорее, это будут профессиональные B2B площадки, отраслевые форумы, мероприятия – узкоспециализированные выставки, конференции, семинары и презентации. Например, Callday от Calltouch.
В B2C сегменте больше «вольностей». Здесь более многочисленные и разнообразные сегменты ЦА, требующие различных подходов, а также менее формальные коммуникации. Образ компании строится не столько на деловых качествах, сколько на имиджевой и эмоциональной составляющей.
В B2C-сегменте позволительно использовать более эмоциональные форматы коммуникаций. Приемлемо обращаться к клиенту на «ты», если это уместно. Например, к подросткам. В B2B аналогичные приёмы используются в разы реже.
Создаем портрет ЦА, который действительно работает: правила, методы, советы и разбор ошибок
Анастасия Никонорова, бизнес-аналитик CityLife, поделилась с блогом Нетологии опытом в создании портрета целевой аудитории: с примерами и разбором главных ошибок.
Принято считать, что ключевая задача маркетинга — привлечение и удержание клиентов. И главный вопрос, который стоит перед большинством специалистов по маркетингу — это не то, какой инструмент следует выбрать, а то, как определить потребности клиентов и правильно сегментировать покупателей так, чтобы сделать предложение, от которого они не смогут отказаться.
Главный метод определения целевой аудитории в современном маркетинге — сегментация. Сегментация — это разделение клиентов на группы по заданным параметрам.
Для чего нужно сегментировать аудиторию?
Во-первых, чтобы понимать, кто ваш клиент, какие у него потребности, и на основании этого правильно позиционировать компанию.
Во-вторых, чтобы выстраивать уникальные механики взаимодействия с каждым из клиентов, повышать конверсию из предложения в покупку и общую лояльность клиентов.
Если вы предлагаете клиенту то, что ему потенциально интересно, то его лояльность бренду и компании увеличивается вне зависимости от того, совершил ли он покупку по этому предложению или нет.
По данным Website builder, 44% людей, получавших таргетированные письма, совершили как минимум одну покупку по содержащимся в них предложениям.
В среднем, сегментация повышает open rate на 14,69%, а click rate — на 60%.
При проведении исследования 52% опрошенных маркетологов сказали о необходимости сегментации базы данных в email-рассылках, так как индивидуальные предложения приносят в 18 раз больше доходов, чем широковещательные.
Какие данные сегментировать
В большинстве случаев сегментации подвергается текущая клиентская база. Но при создании нового бизнеса или отсутствии сбора данных сегментацию можно провести по результатам опросов существующих или потенциальных клиентов.
Многие воспринимают данные опросов только как качественный метод исследования, уступающий анализу покупательского поведения. На самом деле оба вида анализа (на основании опросов и истории покупок) должны использоваться в вашем бизнесе в равной мере, так как они преследуют различные цели.
Анализ результатов опросов используется для приоритезации задач бизнеса, создания вектора коммуникации с потребителями либо корректировки коммуникационной стратегии. Анализ истории покупок — для создания рекламных кампаний, построения механик программы лояльности и геймификации, изменения фокусировок маркетинга.
Например, даже профессиональный аналитик (только если он дополнительно не учился на психолога) не сможет понять лучше самого клиента, что клиенту действительно надо.
Да, данные о покупках могут показать, что клиенты уходят, что снижается средний чек, но понять, за счет чего это происходит и чего не хватает потребителям, — можно лишь с помощью обратной связи.
При этом важно учитывать, что при проведении опроса погрешность могут внести психологические аспекты поведения. Во-первых, так как вы заинтересовались мнением человека, он попытается вас отблагодарить, давая ответы, потенциально угождающие вам. Во-вторых, на результат может значительно повлиять неправильная постановка вопроса или же ваша собственная склонность к подтверждению своей точки зрения.
Важные принципы проведения опросов
Как сегментировать
В этом материале я постаралась отойти от стандартных методов сегментации рынка, которые приносят мало пользы на практике, и описала только те из них, которые мы сами используем при создании стратегий программ лояльности.
Сегментацию можно проводить даже в Excel, для более сложной аналитики и большого объема данных можно использовать методы машинного обучения, языки Python, R, Scala, набирающий популярность Julia и другие.
Существует два крупных типа сегментаций: на основании статических и динамических данных.
Статические данные — критерии пользователей, которые не зависят от его действий, не меняются или меняются редко. К показателям статической сегментации относят: пол, возраст, географические данные.
Динамические показатели — те, что формируются на основании поведения пользователя относительно других пользователей: RFM-кластеризация, размер среднего чека, частота покупок и так далее. Границы сегментов, сформированных на основании поведения, динамические и меняются при совершении каждой новой покупки.
Пошаговое руководство проведения сегментации
1. Определить цель сегментации:
3. Понять, какие данные необходимы:
— посчитать стандартное отклонение. Факт его значительного отличия от среднего значения говорит о том, что в выборке присутствуют выбросы;
— вычислить медиану — величину, находящуюся в середине набора данных, упорядоченного по возрастанию или убыванию. Если количество членов нечетное, то она принимает значение суммы двух срединных членов, деленной на два;
— вычислить верхнюю и нижнюю границу квартиля — величин, за пределами которых (выше и ниже соответственно) находится 25% значений;
— все, что лежит выше суммы (разности) верхней (нижней) границы квартиля и межквартильного расстояния, умноженного на 1,5, является выбросами.
Выше я говорила о том, что данные опросов, как и количественные данные, можно сегментировать, но прежде их надо обработать:
Есть стандартные статистические формулы, которые используются для расчетов, но они предполагают, что вы уже знаете, в каком диапазоне будут находиться ответы.
Очевидно, что чем больше людей будет опрошено, тем точнее будет результат. Выборка на самом деле слабо зависит от генеральной совокупности, у вас может быть 5 тысяч клиентов или 5 миллионов, но по одинаковому числу параметров вам потребуется опросить одинаковое количество респондентов.
Давайте теперь разберем несколько методологий проведения сегментации.
RFM-анализ
RFM-анализ — это анализ по трем показателям:
Мы определяем границы кластеров с помощью вычисления суммы и разности среднего значения со среднеквадратичным отклонением, таким образом, получаем в кластере r2f2m2 наибольшее количество пользователей.
Индексы 1 и 3 в рамках RFM-анализа характеры для исключительных клиентов с различными особенностями поведения. Так, клиенты кластера r1m3 (при любом значении f) — это покупатели, которые ранее были доходны для компании, но перестали совершать покупки, причину чего необходимо выяснить с помощью опросов.
Кластер r3f3m1 является потенциальным для увеличения LTV (monetary), так как клиенты проявляют лояльность, но при этом совершают покупки на небольшие суммы. В такой ситуации следует предложить покупателям скидку при покупке на сумму от N рублей, либо порекомендовать сопутствующие товары на основании истории их покупок.
При помощи RFM-сегментации можно строить значительно более эффективную политику взаимодействия с клиентами, чем отправка писем всей клиентской базе. Для этого анализа вам потребуются необходимые показатели по клиентам, Excel и 30 минут работы.
Кластерный анализ
Цель кластерного анализа — объединить клиентов в группы по схожим параметрам. Наиболее популярный метод визуализации анализа — иерархическое дерево, каждый последовательный уровень которого — сужающиеся факторы различия.
Мы чаще всего используем одну из разновидностей кластерного анализа — k-means.
Алгоритм анализа следующий.
Назначить число кластеров k, на которое будут делиться составляющие кластеризации. Число k либо задается вручную (удобно определять количество кластеров на основании древовидной кластеризации), либо вычисляется как оптимальное значение с помощью машинного обучения.
После этого k произвольных точек назначаются центрами кластеров, и измеряется расстояние между назначенными центрами и всеми остальными точками внутри кластеризации. Принадлежность точки к кластеру определяется определением наименьшего расстояния до одного из k-центров.
Следующий шаг — выбор новых центров, их координаты будут равны среднему значению координат точек внутри кластера. Снова проводится распределение точек по k-кластерам, и операция повторяется до тех пор, пока значения расстояний внутри кластеров не повторятся, это означает, что достигнуто оптимальное деление.
После того, как кластеры сформированы, необходимо понять, по каким параметрам точки в кластерах наиболее схожи, то есть какие из особенностей поведения пользователей являются систематическими. Один из лайфхаков быстрого их определения — построение боксплотов (ящиков с усами), где значениями выступают показатели каждого клиента по выбранному показателю. Они сразу бросаются в глаза наименьшим размахом значений выборки.
На примере мы видим, что кластер сформирован благодаря схожести клиентов по индексам «Вариативность выбора» и «Частота участия в акциях», что представляет собой яркую особенность поведения. Эта группа является целевой для тестирования новой функциональности приложения, сбора обратной связи. Группа заинтересована в акциях и вводе новых товаров.
Этот анализ мы проводим на основании большого количества собранных данных, результат используем для проведения таргетированных акций. На практике мы выяснили, что результат сегментации требует тестирования, так как деление на кластеры может кардинально отличаться от месяца к месяцу.
Также данный вид сегментации можно использовать для анализа опросов. Но так как текстовые данные сложно преобразовать в числовые индексы, тем более, если речь идет о тысячах анкетируемых, то мы рекомендуем задавать вопросы формата «Оцените важность/качество/ величину… от 1 до 5».
Подобным образом мы проводили опросы клиентов банка. Первоначально аудитория была разделена на пользователей различных продуктов банка. Для каждого продукта были сформулированы уникальные вопросы по важности факторов выбора, где анкетируемому предлагалось поставить по каждому из факторов оценку от 1 до 5. Часть полученной сегментации представлена ниже:
Владельцы дебетовых карт:
Анализ ассоциативных правил
Анализ ассоциативных правил (анализ рыночной корзины) — анализ, который используется для нахождения устойчивых сочетаний товаров в покупках. Для его вычисления есть множество алгоритмов, первый из них — AIS — был разработан в 1993 году. Для анализа необходима база данных покупок, каждая покупка должна иметь уникальный идентификатор (часто в этой роли выступает номер чека) и позиции, которые входят в него.
Что в этих случаях делать компаниям, которые не входят в сегмент FMCG? Мы предлагаем использовать и используем в собственном бизнесе вместо номера чека уникальный id клиента. Таким образом мы вычисляем устойчивые паттерны в поведении клиентов относительно истории их покупок, на основании которых строим рекомендательную систему.
Допустим, покупки на Aviasales совершили 3 тысячи человек, на Booking — 1 тысяча. Клиентов, которые совершили покупки как на Aviasales, так и на Booking — 500. Объем клиентской базы равен 5 тысячам клиентов.
На основании этих данных высчитываются два показателя: достоверность (confidence) и поддержка (support) правила.
Поддержка — доля клиентов, совершивших транзакции у обоих партнеров от общего числа транзакций, то есть 10%.
Достоверность (мы ее еще называем силой связи) — доля клиентов, совершивших транзакции у обоих партнеров от количества транзакций каждого из них в отдельности.
Достоверность, как вы уже поняли, имеет два значения, в нашем случае для Booking она равна 50%, для Aviasales — 16,7%. Это означает, что клиент вероятнее совершает покупку на Booking и потом совершает на Aviasales, чем наоборот.
Как это применить в маркетинге? Если мы будем создавать акцию для покупателей, то она будет промоутировать Booking, так как после этого клиенты с большой вероятностью совершат покупку на Aviasales. Также мы можем настроить автоматическую рассылку: после совершения покупки на Booking клиенту будет отправляться промокод на следующую покупку Aviasales со скидкой на ограниченный срок. Еще одним методом монетизации может являться введение сочетания этих двух партнеров в формате комбо-набора, при покупке которого будет увеличен общий кэшбэк.
Главные ошибки при сегментации аудитории
При всей доступности и понятности способов и методов сегментации собственной целевой аудитории многие специалисты по маркетингу допускают ошибки, проделывая эту работу. О семи из них пойдет речь ниже.
Основываться только на поло-возрастных признаках клиентов
Это, по моему мнению, самая большая ошибка, которую можно допускать при сегментации — делать выводы исключительно на основании возраста и пола потребителей. Редко удается найти корреляцию демографических показателей и поведения пользователя. Единственный релевантный пример был получен нами при выявлении закономерности в поведении собственной аудитории. Мы считали отношение клиентов, совершающих транзакции, по возрасту и полу к общему количеству клиентов данного возраста и пола, процент кратно уменьшался для женщин от 35 лет, у мужчин спад был не так значителен. На основании этого было принято решение создавать обучающие видеоролики по совершению онлайн-покупок на Lamoda и Aliexpress.
На самом деле часто приходится встречаться с этой ошибкой. Для одного из наших клиентов — сети продовольственного ритейла — мы с коллегой проводили обучение по аналитике. Буквально с первого взгляда я была приобщена к «поколению Y» и опрошена на предмет того, что может привлечь меня в схожий магазин и заставить начать принимать участие в акциях. Если бы коллеги основывались на моем возрасте и поле, то мне наверняка предложили промо с героями популярных сериалов. Но тогда я возвращалась домой в то время, когда магазины данного формата были закрыты, и с целью экономии времени я заказывала доставку продуктов на дом через интернет-магазин. На основании этого мне стоило предложить готовые наборы товаров, которые я могла забрать по пути домой в одном из пунктов выдачи.
Не обрабатывать данные
Данные, содержащие ошибочные или критические значения, могут привести к значительным ошибкам в результате сегментации. Например, если не исключить выбросы перед проведением RFM-анализа, будут слишком расширены границы кластеров. Таким образом количество клиентов в кластере r2f2m2 будет не соответствовать действительности, и вы не сможете выделить ключевые сегменты для работы.
Не ограничивать период и географию
Проведение сегментации без учета внешних факторов, влияющих на поведение клиентов, может привести к разрозненным или даже неверным результатам. Например, нельзя проводить анализ на совокупности данных по жителям столицы и регионов, так как существует отличие в уровне жизни и заработных платах, высокий средний чек в регионе может быть в границах среднего для Москвы. Аналогично в течение пяти лет сбора данных у вас наверняка была значительно скорректирована ассортиментная матрица, также менялись экономические условия, что говорит о невозможности их равносильного представления в одном массиве.
Не проводить тестирование
Сделать сегментацию и продумать механику взаимодействия с каждым сегментом — еще не вся работа. Необходимо следить за реакцией клиентов, подбирать подходящие каналы коммуникации и тестировать гипотезы.
Мы часто создаем сегментированные рассылки и промопосты в социальных сетях. Например, опытным путем мы выяснили, что клиенты, которые не совершали у нас покупки три месяца, чаще всего скрывали рекламные объявления в социальных сетях, направленные на их возвращение. Но при этом достаточно эффективно для них сработала отправка email-писем с акционным предложением на продление абонентской платы.
Не учитывать активность клиентов
Представим, что аналитик провел достаточно сложный кластерный анализ и нашел сегмент клиентов — владельцев кошек — по принципу регулярных покупок кошачьего корма. Он рад и счастлив, идет с этим инсайтом к директору по маркетингу, в итоге компания отправляет рассылку этим клиентам с акцией на новый премиум-корм со скидкой 50%. Но в результате конверсия в переход по ссылке из письма ниже ожидаемой. Все из-за того, что при формирования списка email-аналитик не учел факт, что анализ он проводил по данным за 3 года, и 50% покупателей более года не совершали покупки.
В первом пункте я приводила пример про интернет-магазин продуктов — это был «Утконос». Живя в Москве, я была предельно к нему лояльна, мне нравился их ассортимент, удобное время доставки: они могли доставлять еду даже в 3 ночи. Учитывая мой прежний график, это было весьма кстати, заказы я совершала минимум раз в месяц. Но вот уже 4 месяца я живу в Санкт-Петербурге, а SMS-сообщения от любимого когда-то «Утконоса», осуществляющего доставку продуктов только по Москве, мне продолжают приходить. Отсутствие заказов в течение срока, в четыре раза превышающий мой средний интервал, их не смущает, они тратят впустую бюджет на рассылки, а у меня фактически нет возможности совершить повторный заказ.
Не обновлять сегментацию
Данные сегментации, как и любые другие, имеют свойство устаревать. И скорость этого зависит от особенностей бизнеса. Для ритейла, например, максимальная длительность актуальности сегментации — месяц. Наиболее оптимальное решение — настроить автоматическое обновление или создать BI-дашборд для регулярного контроля показателей, влияющих на результат сегментации. Если такой возможности нет, то сегментацию стоит регулярно обновлять вручную.
Использовать сегментацию только с целью определения ЦА
Несомненно важно понимать, кто ваши клиенты, но это далеко не единственное применение сегментации. Важно строить коммуникацию с клиентами и в целом маркетинговую политику, используя данные. Разным сегментам должны посылаться разные ключевые сообщения, им интересны разные предложения и товары. Это один из способов существенно улучшить ваш бизнес. Не используя его, вы теряете конкурентное преимущество.
Правильно определять, сегментировать и работать со своей целевой аудиторией — важный навык современного специалиста по маркетингу. В этом материале были рассмотрены цели и задачи сегментации, методологии и виды анализа, главные ошибки при проведении сегментации. Используйте эту информацию, профессионально работайте с собственными покупателями, и успех вашего бизнеса не заставит себя долго ждать. Удачи!
Сегментация аудитории стартапа. Полный гайд для фаундеров
Чтобы начать продавать свой продукт, вам нужно будет изучить свою целевую аудиторию и разделить ее по группам. В статье, команда Adventures Lab расскажет, что такое сегментация, как это сделать и какие инструменты облегчат этот пласт работы.
Если разделить общую группу потребителей на несколько маленьких, будет легче и дешевле выйти на рынок. Когда аудитория одна и относительно глобальная, маркетинговый бюджет растягивается настолько, насколько это вообще возможно.
Сегментация позволяет персонализировать рекламу под конкретного человека. Определите конкретный портрет человека, на которого нацеливается рекламная кампания и обращайтесь к потребителю “на его языке”, учитывая его интересы, уровень образования, возраст, пол, место жительства и т.д.
Также, сегментация поможет определиться с путями перекрестного маркетинга. Вы будете более четко понимать, какие категории услуг или товаров можно предложить дополнительно человеку, который совершает покупку.
Прежде всего, нужно провести исследование всей аудитории и получить данные своих потребителей.
В интересах каждого начинающего предпринимателя, знать аудиторию как можно лучше. Для этого, как альтернатива, выходите “в поле” и говорите лично со своими клиентами. Технологии, конечно же, позволят провести анализ аудитории автоматизировано, но ничего не заменит человеческого общения.
Суть географической сегментации заключается в распределении клиентов по месту жительства (страна, регион, город, район, улица).
Например, компания по доставке продуктов в Нью Йорке может разделить своих клиентов на категории Квинс, Бруклин, Манхэттен, Бронкс и Статен-Айленд.
При этом, создавая бизнес и продумывая маркетинговую стратегию, учтите особенности местности и менталитет жителей. В той же Флориде было бы уместно рекламировать купальники круглый год, но будет не очень актуально продвигать их в Миннесоте зимой.
Например, авиакомпания может корректировать рекламные кампании на разные группы, в зависимости от возраста и времени года. Когда студенты могут позволить себе путешествовать во время весенних каникул, зрелые люди будут, с большей вероятностью, летать по праздникам.
В B2B сегменте, демографическая сегментация касается размера компании, отрасли, роли, количества работников, местонахождении компании и многое другое.
В этой категории учитываются образ жизни вашего потребителя, интересы, хобби, принципы, ценности и многое другое. Знание психографии (того, о чем думает покупатель) поможет улучшить продукт и продумать стратегию продвижения.
Сегментировать людей на основе психографии гораздо сложнее. Такие нюансы не очевидны и их непросто отследить, в отличии от географии. Вам придется углубиться в личность клиента и представить себя на его месте.
Когда делается поведенческая сегментация, клиенты делятся на группы в зависимости от их лояльности, осведомленности о бренде, симпатий и моделей совершения покупок.
Например, компания Lyft сделает email-рассылку клиентам, которые некоторое время не использовали их приложение. Постоянным пользователям отправлять подобные письма не нужно. Это пример разделения, основанном на лояльности.
Когда вы успешно сегментируете аудиторию, нужно разделить методы и особенности маркетингового влияния, чтобы качественно хватить каждую группу потребителей. Вот несколько советов по маркетингу от предпринимателя и маркетолога, Майкла Киля:
Компания Facebook позволяет запускать и тестировать разные рекламные кампании одновременно, буквально за несколько кликов. Там же можно настроить ремаркетинг, показ объявлений в Instagram, а платить только тогда, когда человек кликает на объявление.
По сравнению с альтернативными инструментами, в Facebook вы увеличите узнаваемость своего бренда по относительно низкой цене. Это одна из самых банальных и простых вещей, которую стоит сделать чтобы охватить широкую аудиторию за короткий промежуток времени.
Генерируйте контент, который будет интересен целевой аудитории и публикуйте его на ресурсах, где проводят время ваши клиенты. Создавайте бизнес-страницы и группы в Facebook, Linkedin, VKontakte, Twitter и других социалках, чтобы быть ближе к клиентам и доносить ценную информацию им напрямую.
Например, Adventures Lab публикуют авторские статьи на блог-платформах (в частности, VC, Medium и Hashtap), делают анонсы новых материалов и посты с ценной информацией в социальных сетях (Facebook и Linkedin)
Также, попробуйте настроить объявления по низкочастотным поисковым запросам. Охватив множество непопулярных запросов, реально сэкономить и получить больший фидбэк.
Есть несколько отличных бесплатных и недорогих инструментов, доступных онлайн, которые бесценны для сегментации клиентов. Вот некоторые, которые мы любим.
Инвестиционная компания Adventures Lab, активно ищет стартапы. Мы поможем инкубировать вашу идею, запустить бизнес и развить его по максимуму. Заявить о своем проекте можно, просто заполнив специальную форму на нашем саите.