сделать выборку что это значит
Простыми словами о выборке
Привет. Я UX-исследователь в СКБ Контур. Чаще всего в работе я использую качественные методы исследований — глубинные интервью и модерируемые юзабилити-тестирования. Количественные исследования без подготовленной инфраструктуры со стороны разработки более ресурсозатратные, поэтому самостоятельно их провести сложнее.
Но самое сложное для меня в проведении количественного исследования — это выборка. Мне ближе гуманитарная сторона исследовательской работы, поэтому разобраться в выборке сложнее, чем в техниках ведения интервью. Если у тебя такая же проблема, эта статья будет полезна.
Ниже я попробовала просто рассказать о выборке, репрезентативности и методах отбора при проведении количественного исследования.
Выборка и репрезентативность
Опрос — это количественный метод, направленный на получение точной, объективной и статистически значимой информации. Если качественные методы помогают в формулировке гипотез, то количественные — масштабируют и проверяют эти гипотезы на всей целевой аудитории.
Поэтому важно проводить отбор респондентов таким образом, чтобы выборочная совокупность отражала состав всей генеральной совокупности.
В социологии есть термин — единица наблюдения. Это может быть один человек, группа или сообщество в зависимости от целей исследования.
Генеральная совокупность — это вся совокупность единиц наблюдения, имеющих отношение к теме исследования.
Например, если ты проводишь продуктовое исследование, то скорее всего твоя генеральная совокупность — это все пользователи сервиса или определенный сегмент.
Выборочная совокупность — часть генеральной совокупности, которую вы изучаете в ходе исследования с помощью разработанных вами инструментов (анкета, гайд и прочее).
Например, в ходе исследования было опрошено 400 респондентов среди всех пользователей сервиса. Это твоя выборочная совокупность.
Выборка должна быть репрезентативной, иначе результаты количественного исследования будут сомнительными.
Репрезентативность — обеспечение в выборочной совокупности наличия всех видов единиц генеральной совокупности в достаточном количестве.
Репрезентативность имеет качественное и количественное выражение. Качественная репрезентация обязывает включить в выборку все возможные варианты респондентов, особенно, если какой-то признак влияет на опыт использования сервиса.
Например, выборка не будет репрезентативной если ты опросишь только новых пользователей (если это не оправдано целями исследования). Особенно это исказит результаты исследования, если длительность использования напрямую влияет на проверку гипотезы.
На практике, особенно в онлайн-опросах, качественная репрезентативность может страдать. Ею можно пренебречь, если вы уверены, что на проверку гипотезы не повлияет принадлежность респондента к той или иной группе. Онлайн-опросы предполагают стихийную выборку и поэтому предусмотреть присутствие всех типов респондентов сложно. Про стихийную выборку подробнее я расскажу ниже.
Чтобы соблюсти количественную репрезентацию нужно обеспечить достаточное число респондентов, в том числе по каждой группе внутри выборки.
Например, если ты пригласишь на опрос 80% новых пользователей и лишь 20% пользователей с опытом — это тоже исказит результаты (опять же если это не предусмотрено дизайном исследования).
И, конечно, для того, чтобы масштабировать результаты опроса на всю генеральную совокупность (в нашем примере — на всех пользователей), нужно в целом рассчитать количество человек, которое ты планируешь пригласить для прохождения опроса.
Что значит «достаточное» количество человек для выборки.
К примеру, если проводить исследование на выборке в 50–100 человек, то погрешность в репрезентативности полученной информации будет выше, чем при опросе 800–1000 человек.
Но увеличивать до бесконечности число опрашиваемых нет смысла. После определенного количества респондентов ошибка выборки остановится на одном уровне.
Ошибка выборки — разность между характеристиками выборочной и генеральной совокупности. Это отклонение средних характеристик выборочной совокупности от средних характеристик генеральной совокупности.
Где-то после 400 респондентов ошибка выборки не меняется. Поэтому обычно в опросах выборочная совокупность составляет 300–400 человек. При таком значении ты можешь уверенно переносить результаты исследования на всю аудиторию при соблюдении качественной репрезентации и корректно составленной анкеты.
Если генеральная совокупность небольшая, то и выборочная совокупность будет меньше стандартных 300–400 респондентов.
Если хочешь разобраться с формулой расчета выборки подробнее про нее можно узнать здесь.
Также ты можешь провести сплошной опрос. При сплошном опросе ты опрашиваешь всю генеральную совокупность.
Например, если есть интересный и немногочисленный сегмент пользователей (30–100 человек), ты можешь опросить их всех. Или это стартап и уже есть первые пользователи. В таком случае тоже можно провести опрос по всей генеральной совокупности.
На практике требованиями количественной репрезентации иногда пренебрегают в силу нехватки ресурсов на обзвон (если это телефонный опрос) или времени на сбор ответов. Или если опрос проводят для сбора гипотез, а не для принятия конечного решения.
Здесь важно понимать, какое решение должно быть принято на основе исследования. Если это важный продуктовый или бизнес-вопрос, то лучше потратить время и деньги на проверку гипотезы с репрезентативной выборкой, чтобы не получить неверные выводы. А если, это, к примеру, опрос для сбора отклика по новой фиче, то можно остановиться на 30–60 респондентах. Основные выводы ты сделаешь, а пользователи по мере работы в сервисе расскажут о том, что ты мог пропустить.
Методы отбора
В количественном исследовании по сравнению с качественным не важно кто перед тобой, потому что все выводы строятся по совокупности ответов респондентов и материал собирается в обезличенном виде. Поэтому в идеале в выборку респонденты должны попадать случайным образом, чтобы сделать результаты максимально свободными от искажений.
Чтобы этого достичь можно использовать один из методов формирования выборки.
Случайные выборки
Они предполагают, что в выборке каждый элемент генеральной совокупности имеет заранее заданную вероятность быть отобранным в исследование.
Простая случайная выборка. Сначала нужно присвоить каждому потенциальному респонденту идентификационный номер. Дальше с помощью генератора случайных чисел определить номера, которые будут включены в выборку для опроса.
Механическая выборка. Как и в простой выборке пользователям присваивается порядковый номер. Только отбор происходит не с помощью генератора случайных чисел, а с шагом равным n. Например, каждый сотый.
Стратифицированная выборка. Для такой выборки нужно поделить генеральную совокупность на сегменты или страты. После чего респонденты внутри каждой группы отбираются случайным образом. Из каждого сегмента выделяют пользователей пропорционально их доле в генеральной совокупности.
Кластерный отбор или гнездовая выборка. Группа потенциальных респондентов отбирается случайным образом из всей генеральной совокупности. Далее внутри этой группы опрашиваются все пользователи. Например, можно опросить всех пользователей, которые зарегистрировались в сервисе в прошлом квартале.
При таком отборе риск искажений выше и важно учитывать внешние и внутренние факторы. Может быть в прошлом квартале в жизни пользователей произошло что-то важное, что повлияло на их желание воспользоваться сервисом. Тогда эта группа будет сильно отличаться от генеральной совокупности.
Неслучайные выборки
Обычно такие методы отбора применяют, если нет возможности или ресурсов для формирования случайной выборки. Например, у тебя мало времени на опрос или нет данных о генеральной совокупности или респонденты труднодоступны.
Квотная выборка. Такой метод можно применять, если у вас есть знания о составе генеральной совокупности. Например, вы знаете, как ваши пользователи распределяются в разрезе по должности, отрасли компании, возрасту и так далее. Тогда можно пропорционально этим долям сформировать выборку: в каждом разрезе выбрать такое число респондентов, которое будет отображать статистику по всей аудитории.
Стихийная выборка. Это метод без особых правил. В опрос попадают все, кто захочет пройти опрос. Такая выборка типична для онлайн-опросов, размещенных в свободном доступе.
«Снежный ком». Тоже достаточно популярная и простая методика. Каждого респондента просят порекомендовать нового среди его друзей, коллег и знакомых, которые подходили бы под параметры исследования. Такая выборка часто применяется когда самостоятельно найти интересующих респондентов затруднительно. Например, пользователи, занимающие высокую должность или с высоким доходом.
«Типичный представитель». Из генеральной совокупности отбираются респонденты с типичными признаками целевой аудитории. Только определить, что взять за такой признак, обычно сложно.
Отдельно стоит сказать про многоступенчатые выборки. На практике чаще всего (иногда интуитивно) исследователи используют как раз многоступенчатый метод. Такой отбор предполагает наличие двух или более этапов формирования выборки. Проще говоря, это микс нескольких методов отбора.
Например, ты собрал статистику по своей аудитории и знаешь, что большинство пользователей находятся в Москве. Это будет первая ступень отбора по «типичному представителю». Далее среди пользователей-москвичей ты приглашаешь на опрос каждого сотого (механическая выборка).
Проводя количественное исследование, не забывай о репрезентативности и продумывай подходящий метод отбора респондентов. Хорошая подготовка — половина успеха.
Выборка
Выборка — множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.
Содержание
Объём выборки
Объём выборки — число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30—35.
Зависимые и независимые выборки
При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X сооветствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми. Примеры зависимых выборок:
В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми, например:
Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.
Сравнение выборок производится с помощью различных статистических критериев :
Репрезентативность
Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной.
Пример нерепрезентативной выборки
На действительных же выборах, как известно, победил Рузвельт, набрав более 60 % голосов. Ошибка «Литрери Дайджест» заключалась в следующем: желая увеличить репрезентативность выборки, — так как им было известно, что большинство их подписчиков считают себя республиканцами, — они расширили выборку за счёт людей, выбранных из телефонных книг и регистрационных списков. Однако они не учли современных им реалий и в действительности набрали ещё больше республиканцев: во время Великой депрессии обладать телефонами и автомобилями могли себе позволить в основном представители среднего и верхнего класса (то есть большинство республиканцев, а не демократов).
Виды плана построения групп из выборок
Выделяют несколько основных видов плана построения групп [2] :
Стратегии построения групп
Рандомизация
Попарный отбор
Стратометрический отбор
Приближённое моделирование
Источники
Рекомендуемая литература
Наследов А. Д. Математические методы психологического исследования. СПб.: Речь, 2004.
См. также
В некоторых типах исследований выборка разделяется на:
is:Úrtak lt:Imtis nl:Steekproef pl:Próba losowa sv:Stickprov
Выборка
Выборка или выборочная совокупность — множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.
Содержание
Объём выборки
Объём выборки — число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30—35.
Зависимые и независимые выборки
При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми. Примеры зависимых выборок:
В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми, например:
Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.
Сравнение выборок производится с помощью различных статистических критериев:
Репрезентативность
Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной.
Пример нерепрезентативной выборки
На действительных же выборах, как известно, победил Рузвельт, набрав более 60 % голосов. Ошибка «Литрери Дайджест» заключалась в следующем: желая увеличить репрезентативность выборки, — так как им было известно, что большинство их подписчиков считают себя республиканцами, — они расширили выборку за счёт людей, выбранных из телефонных книг и регистрационных списков. Однако они не учли современных им реалий и в действительности набрали ещё больше республиканцев: во время Великой депрессии обладать телефонами и автомобилями могли себе позволить в основном представители среднего и высшего класса (то есть большинство республиканцев, а не демократов).
Виды плана построения групп из выборок
Выделяют несколько основных видов плана построения групп [2] :
Типы выборки
Выборки делятся на два типа:
Вероятностные выборки
Процедура построения простой случайной выборки включает в себя следующие шаги:
1. необходимо получить полный список членов генеральной совокупности и пронумеровать этот список. Такой список, напомним, называется основой выборки;
2. определить предполагаемый объем выборки, то есть ожидаемое число опрошенных;
3. извлечь из таблицы случайных чисел столько чисел, сколько нам требуется выборочных единиц. Если в выборке должно оказаться 100 человек, из таблицы берут 100 случайных чисел. Эти случайные числа могут генерироваться компьютерной программой.
4. выбрать из списка-основы те наблюдения, номера которых соответствуют выписанным случайным числам
1. зачастую сложно создать основу выборочногo наблюдения, которая позволила бы провести простую случайную выборку.
2. результатом применения простой случайной выборки может стать большая совокупность, либо совокупность, распределенная по большой географической территории, что значительно увеличивает время и стоимость сбора данных.
3. результаты применения простой случайной выборки часто характеризуются низкой точностью и большей стандартной ошибкой, чем результаты применения других вероятностных методов.
4. в результате применения SRS может сформироваться нерепрезентативная выборка. Хотя выборки, полученные простым случайным отбором, в среднем адекватно представляют генеральную совокупность, некоторые из них крайне некорректно представляют изучаемую совокупность. Вероятность этого особенно велика при небольшом объеме выборки.
Невероятностные выборки
Отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям – доступности, типичности, равного представительства и т.д.
6.Модальная выборка. 7.экспертная выборка. 8.Гетерогенная выборка.
Стратегии построения групп
Рандомизация
Рандомизация, или случайный отбор, используется для создания простых случайных выборок. Использование такой выборки основывается на предположении, что каждый член популяции с равной вероятностью может попасть в выборку. Например, чтобы сделать случайную выборку из 100 студентов вуза, можно сложить бумажки с именами всех студентов вуза в шляпу, а затем достать из неё 100 бумажек — это будет случайным отбором (Гудвин Дж., с. 147).
Попарный отбор
Попарный отбор — стратегия построения групп выборки, при котором группы испытуемых составляются из субъектов, эквивалентных по значимым для эксперимента побочным параметрам. Данная стратегия эффективна для экспериментов с использованием экспериментальных и контрольных групп с лучшим вариантом — привлечением близнецовых пар (моно- и дизиготных), так как позволяет создать.
Стратометрический отбор
Стратометрический отбор — рандомизация с выделением страт (или кластеров). При данном способе формирования выборки генеральная совокупность делится на группы (страты), обладающие определёнными характеристиками (пол, возраст, политические предпочтения, образование, уровень доходов и др.), и отбираются испытуемые с соответствующими характеристиками.
Приближённое моделирование
Приближённое моделирование — составление ограниченных выборок и обобщение выводов об этой выборке на более широкую популяцию. Например, при участии в исследовании студентов 2-го курса университета, данные этого исследования распространяются на «людей в возрасте от 17 до 21 года». Допустимость подобных обобщений крайне ограничена.
Приближенное моделирование – формирование модели, которая для четко оговоренного класса систем (процессов) описывает его поведение (или нужные явления) с приемлемой точностью.
Примечания
Литература
Наследов А. Д. Математические методы психологического исследования. — СПб.: Речь, 2004.
Часто бывает так, что необходимо проанализировать какое-либо конкретное социальное явление и получить информацию о нем. Такие задания часто возникают в статистике и при статистических исследованиях. Проверить полностью определенное социальное явление чаще всего бывает невозможным. Например, как узнать мнение населения или всех жителей определенного города по какому-либо вопросу? Спрашивать абсолютно всех – дело практически невозможное и очень трудоемкое. В таких случаях нам и необходима выборка. Это именно то понятие, на котором основаны практически все исследования и анализы.
Что такое выборка
При анализе конкретного социального явления необходимо получить информацию о нем. Если взять любое исследование, то можно заметить, что исследованию и анализу подлежит не каждая единица совокупности объекта исследования. Во внимание берется только определенная часть всей этой совокупности. Вот этот процесс и является выборкой: когда исследуются только определенные единицы из множества.
Конечно же, многое зависит от вида выборки. Но есть и основные правила. Главное из них гласит, что отбор из совокупности должен быть абсолютно случайным. Единицы совокупности, которые будут использованы, не должны быть выбраны из-за какого-либо критерия. Грубо говоря, если необходимо набрать совокупность из населения определенного города и отобрать только мужчин, то в исследовании будет ошибка, потому что отбор был проведен не случайно, а отобран по гендерному признаку. Практически все методы выборки основаны на этом правиле.
Правила выборки
Для того чтобы отобранная совокупность отражала основные качества всего явления, она должна быть построена по конкретным законам, где основное внимание необходимо уделять следующим категориям:
Особенности выборочного наблюдения и составления выборки заключаются в следующем:
Выборочное наблюдение
Но выборочное наблюдение может использоваться только в тех случаях, когда необходимо исследовать лишь малую группу единиц. Например, при исследовании соотношения мужчин к женщинам в мире, будет использоваться выборочное наблюдение. По понятным причинам – взять во внимание каждого жителя нашей планеты невозможно.
Выборочная и генеральная совокупность
На самом деле все не так сложно, как звучит. В любом объекте изучения есть две системы: генеральная и выборочная совокупность. Что же это такое? Все единицы относятся к генеральной. А к выборочной – те единицы общей совокупности, которые были взяты для выборки. Если все правильно сделано, то отобранная часть будет составлять уменьшенный макет всей (генеральной) совокупности.
Если говорить о генеральной совокупности, то можно выделить всего две ее разновидности: определенная и неопределенная генеральная совокупность. Зависит от того, известно ли общее количество единиц данной системы или нет. Если это определенная генеральная совокупность, то выборку будет делать легче из-за того, что известно, какой процент от общего количества единиц будет составлять выборка.
Этот момент очень необходим в исследованиях. Например, если необходимо исследовать процент недоброкачественной продукции кондитерских изделий на конкретном заводе. Допустим, что генеральная совокупность уже определена. Точно известно, что в год это предприятие производит 1000 кондитерских изделий. Если сделать выборку 100 случайных кондитерских изделий из этой тысячи и отправить их на экспертизу, то погрешность будет минимальной. Грубо говоря, исследованию подлежало 10 % всей продукции, и по результатам можем, приняв во внимание ошибку репрезентативности, говорить о недоброкачественности всей продукции.
А если провести выборку 100 кондитерских изделий из неопределенной генеральной совокупности, где их на самом деле было, допустим, 1 млн единиц, то результат выборки и самого исследования будет критически неправдоподобным и неточным. Чувствуете разницу? Поэтому определенность генеральной совокупности в большинстве случаев крайне важна и очень сильно влияет на результат исследования.
Репрезентативность совокупности
Иными словами, если после отбора часть сохраняет те же самые тенденции и особенности что и все количество исследуемого, то такая совокупность называется репрезентативной. Но не каждая определенная выборка может быть отобрана из репрезентативной совокупности. Бывают и такие объекты исследования, выборка которых просто не может быть репрезентативной. Отсюда и возникает понятие ошибки репрезентативности. Но об этом поговорим подробнее чуть больше.
Как сделать выборку
Итак, чтобы репрезентативность была максимальной, выделяют три основные правила выборки:
Погрешность (ошибка) репрезентативности
Главной характеристикой качества выбранной выборки является понятие «погрешности репрезентативности». Что же это такое? Это определенные расхождения между показателями выборочного и сплошного наблюдения. По показателям погрешности репрезентативность делят на надежную, обычную и приближенную. Иначе говоря, допустимыми являются отклонения в размере до 3 %, от 3 до 10 % и от 10 до 20 % соответственно. Хотя в статистике желательно, чтобы погрешность не превышал 5-6 %. В противном случае есть повод говорить о недостаточной репрезентативности выборки. Для вычисления погрешности репрезентативности и того, как она влияет на выборочную или генеральную совокупность, во внимание берутся многие факторы:
В конкретно заданных исследованиях процент погрешности среднего значения обычно задается самим исследователем на основании программы наблюдения и согласно данным ранее проведенных исследований. Как правило, считается допустимой предельная ошибка выборки (ошибка репрезентативности) в пределах 3-5 %.
Больше – не всегда лучше
В то же время нельзя и чрезмерно увеличивать размер погрешности репрезентативности. Ведь в этом случае, хотя и произойдет уменьшение объема выборочной совокупности, это приведет к ухудшению достоверности полученных результатов.
Какие вопросы обычно ставится перед исследователем
Любое исследование если и проводится, то для какой-то цели и для получения каких-то результатов. При проведении выборочного исследования, как правило, ставятся начальные вопросы:
Способы отбора единиц исследования в выборку
Не каждая выборка является репрезентативной. Иногда один и тот же признак по-разному выражен в целом и в ее части. Для достижения требований репрезентативности целесообразным является использование различных приемов создания выборки. Причем использование того или иного способа зависит от конкретных обстоятельств. Среди таких приемов создания выборки выделяют:
Случайный отбор представляет собой систему мероприятий, направленных на случайный отбор единиц совокупности, когда вероятность попасть в выборку является равной для всех единиц генеральной совокупности. Этот прием целесообразно применять только в случае однородности и небольшого количества присущих ей признаков. В противном случае некоторые характерные черты рискуют быть не отраженным в выборке. Признаки случайного отбора лежат в основе всех других способов построения выборки.
При механическом отбор единиц проводится через определенный интервал. Если необходимо сформировать выборку конкретных преступлений, можно изымать из всех карточек статистического учета зарегистрированных преступлений каждую 5-ю, 10-ю или 15-ю карточку в зависимости от их общего количества и имеющихся размеров выборки. Недостатком этого способа является то, что перед отбором необходимо иметь полный учет единиц совокупности, затем нужно провести ранжирование и только после этого можно проводить выборку с определенным интервалом. Этот метод занимает много времени, поэтому он и не часто используется.
Типичный (районированный) отбор – вид выборки, при котором генеральную совокупность разделяют на однородные группы по определенному признаку. Иногда исследователи употребляют вместо «групп» другие термины: «районы» и «зоны». Затем из каждой группы в случайном порядке отбирается определенное количество единиц пропорционально удельному весу группы в общей совокупности. Типичный отбор часто осуществляется в несколько этапов.