с чем реагирует сероводород
Сероводород H2S и сульфиды- химические свойства
Физические свойства сероводорода:
Получение сероводорода:
1) Из простых веществ: H2 + S t° → H2S
2) Реакцией обмена: FeS + 2HCl→FeCl2 + H2S
Химические свойства сероводорода:
1) Раствор H2S в воде – слабая двухосновная кислота.
Сероводородная кислота образует два ряда солей — средние (сульфиды) и кислые (гидросульфиды).
2) Взаимодействует с основаниями:
3) Качественная реакция на сероводород и растворимые сульфиды — образование темно-коричневого (почти черного) осадка PbS:
4) H2S проявляет очень сильные восстановительные свойства:
5) Сероводород окисляется кислородом:
6) Серебро при контакте с сероводородом чернеет:
Сульфиды — получение и химический свойства
Получение сульфидов:
1) Многие сульфиды получают нагреванием металла с серой:
Hg + S → HgS (при комнатной температуре)
2) Растворимые сульфиды получают действием сероводорода на щелочи:
3) Нерастворимые сульфиды получают обменными реакциями:
Химические свойства сульфидов:
1) Растворимые сульфиды сильно гидролизованы, вследствие чего их водные растворы имеют щелочную реакцию:
2) Нерастворимые сульфиды можно перевести в растворимое состояние действием концентрированной HNO3:
3) Водорастворимые сульфиды растворяют серу с образованием полисульфидов:
Полисульфиды при окислении превращаются в тиосульфаты, например:
Сероводород
Сероводород
Строение молекулы и физические свойства
Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.
Способы получения сероводорода
1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.
FeS + 2HCl → FeCl2 + H2S↑
Еще один способ получения сероводорода – прямой синтез из водорода и серы:
Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.
Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.
2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.
Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:
Химические свойства сероводорода
1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:
H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O
В избытке кислорода:
3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.
Например, бром и хлор окисляют сероводород до молекулярной серы:
H2S + Br2 → 2HBr + S↓
H2S + Cl2 → 2HCl + S↓
Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:
При кипячении сера окисляется до серной кислоты:
Прочие окислители окисляют сероводород, как правило, до молекулярной серы.
Соединения железа (III) также окисляют сероводород:
H2S + 2FeCl3 → 2FeCl2 + S + 2HCl
Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:
Серная кислота окисляет сероводород либо до молекулярной серы:
Либо до оксида серы (IV):
4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.
Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.
Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.
Сероводород. Свойства сероводорода.
Сероводород (H2S) – очень канцерогенный, токсичный газ. Имеет резкий характерный запах тухлых яиц.
Получение сероводорода.
1. В лаборатории H2S получают в ходе реакции между сульфидами и разбавленными кислотами:
2. Взаимодействие Al2S3 с холодной водой (образующийся сероводород более чистый, чем при первом способе получения):
Химические свойства сероводорода.
Сероводород H2S – ковалентное соединение, не образующее водородных связей, как молекула Н2О. (Разница в том, что атом серы больший по размеру и более электроотрицательный, чем атом кислорода. Поэтому плотность заряда у серы меньше. И из-за отсутствия водородных связей температура кипения у H2S выше, чем у кислорода. Также H2S плохо растворим в воде, что также указывает на отсутствие водородных связей).
2. Сероводород H2S – очень слабая кислота, в растворе ступенчато диссоциирует:
3. Взаимодействует с сильными окислителями:
4. Реагирует с основаниями, основными оксидами и солями, при этом образуя кислые и средние соли (гидросульфиды и сульфиды):
Эту реакцию используют для обнаружения сероводорода или сульфид-ионов. PbS – осадок черного цвета.
С чем реагирует сероводород
Основное и возбужденное состояние атома серы
Электроны s- и p-подуровня способны распариваться и переходить на d-подуровень. Как и всегда, количество валентных электронов отражает количество возможных связей у атома.
В разных электронных конфигурациях сера способна принимать валентности: II, IV и VI.
Природные соединения
В местах вулканической активности встречаются залежи самородной серы.
В промышленности серу получают из природного газа, который содержит газообразные соединения серы: H2S, SO2.
Серу можно получить разложением пирита
В лабораторных условиях серу можно получить слив растворы двух кислот: серной и сероводородной.
При нагревании сера бурно взаимодействует со многими металлами с образованием сульфидов.
При взаимодействии с концентрированными кислотами (при длительном нагревании) сера окисляется до сернистого газа или серной кислоты.
Сера вступает в реакции диспропорционирования с щелочами.
Сера вступает в реакции с солями. Например, в кипящем водном растворе сера может реагировать с сульфитами с образованием тиосульфатов.
Бесцветный газ с характерным запахом тухлых яиц. Огнеопасен. Используется в химической промышленности и в лечебных целях (сероводородные ванны).
Сероводород получают в результате реакции сульфида алюминия с водой, а также взаимодействия разбавленных кислот с сульфидами.
Сероводород плохо диссоциирует в воде, является слабой кислотой. Реагирует с основными оксидами, основаниями с образованием средних и кислых солей (зависит от соотношения основания и кислоты).
KOH + H2S = KHS + H2O (гидросульфид калия, избыток кислоты)
Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.
Качественной реакцией на сероводород является реакция с солями свинца, при котором образуется сульфид свинца.
В промышленных условиях сернистый газ получают обжигом пирита.
В лаборатории SO2 получают реакцией сильных кислот на сульфиты. В ходе подобных реакций образуется сернистая кислота, распадающаяся на сернистый газ и воду.
Сернистый газ получается также в ходе реакций малоактивных металлов с серной кислотой.
Химически сернистый газ очень активен. Его восстановительные свойства продемонстрированы в реакциях ниже.
В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства (понижать степень окисления).
Сернистая кислота
Слабая, нестойкая двухосновная кислота. Существует лишь в разбавленных растворах.
Диссоциирует в водном растворе ступенчато.
С сильными восстановителями сернистая кислота принимает роль окислителя.
Как и сернистый газ, сернистая кислота и ее соли обладают выраженными восстановительными свойствами.
Является высшим оксидом серы. Бесцветная летучая жидкость с удушающим запахом. Ядовит.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Сероводород, свойства, получение и применение
Сероводород – бинарное химическое соединение водорода и серы, имеющее формулу H2S.
Сероводород, формула, молекула, строение, состав, вещество:
Сероводород (сернистый водород, сульфид водорода, дигидросульфид) – бесцветный газ со сладковатым вкусом с характерным неприятным тяжёлым запахом тухлых яиц (тухлого мяса).
Сероводород – бинарное химическое соединение водорода и серы, имеющее формулу H2S.
Химическая формула сероводорода H2S.
Строение молекулы сероводорода, структурная формула сероводорода:
Сероводород – наиболее активное из серосодержащих соединений.
Сероводород плохо растворяется в воде. Раствор сероводорода в воде – очень слабая сероводородная кислота. Хорошо растворим в бензоле и этаноле.
Термически устойчив при температурах менее 400 °C. При температурах более 400 °C разлагается на составляющие – простые вещества: водород и серу.
В отличие от воды, в сероводороде не образуются водородные связи, поэтому сероводород в обычных условиях не сжижается.
Сероводород является сверхпроводником при температуре 203 К (-70 °C) и давлении 150 ГПа.
Сероводород коррозионно активен, поэтому предъявляются дополнительные требования при разработке нефтяных, газовых и газоконденсатных месторождений, содержащий сероводород.
Чрезвычайно огнеопасен. Смеси сероводорода и воздуха взрывоопасны. Возможно возгорание на расстоянии. Горит синим пламенем.
Соли сероводородной кислоты (раствор сероводорода в воде) называют сульфидами. В воде хорошо растворимы только сульфиды щелочных металлов, аммония. Сульфиды остальных металлов практически не растворимы в воде, они выпадают в осадок в ходе химических реакций. Многие сульфиды ярко окрашены. Многие природные сульфиды в виде минералов являются ценными рудами (пирит, халькопирит, киноварь, молибденит).
Сероводород в природе встречается редко, в незначительных количествах в составе природного газа, попутного нефтяного газа, сланцевого газа, а также в вулканических газах, в растворённом виде – в нефти, сланцевой нефти и в природных водах. Например, в Чёрном море слои воды, расположенные глубже 150-200 м, содержат растворённый сероводород (концентрация 14 мл/л).
Образуется при гниении белков, которые содержат в составе серосодержащие аминокислоты метионин и (или) цистеин. Небольшое количество сероводорода содержится в кишечных газах человека и животных.
Физические свойства сероводорода:
Наименование параметра: | Значение: |
Химическая формула | H2S |
Синонимы и названия иностранном языке | hydrogen sulfide (англ.) |
водород сернистый (рус.)
водорода сульфид (рус.)
* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.
Получение сероводорода:
Сероводород в лаборатории получают в результате следующих химических реакций:
Данная реакция отличается чистотой полученного сероводорода
Химические свойства сероводорода. Химические реакции (уравнения) сероводорода:
Основные химические реакции сероводорода следующие:
1. реакция взаимодействия сероводорода и брома:
В результате реакции образуются бромоводород и сера. В ходе реакции используется насыщенный раствор сероводорода.
2. реакция взаимодействия сероводорода и йода:
В результате реакции образуются йодоводород и сера. В ходе реакции используется насыщенный раствор сероводорода.
3. реакция взаимодействия сероводорода и кислорода:
В результате реакции образуются сера и вода. Реакция протекает медленно на свету, в растворе или в газовой фазе. Сероводород в ходе реакции используется в виде насыщенного раствора. На данной реакции основан промышленный способ получения серы.
4. реакция горения сероводорода:
В результате реакции образуются оксид серы и вода. Реакция горения сероводорода на воздухе.
5. реакция взаимодействия сероводорода и озона:
В результате реакции образуются оксид серы и вода. Сероводород в ходе реакции используется в виде газа.
6. реакция взаимодействия сероводорода и кремния:
В результате реакции образуются сульфид кремния и водород.
7. реакция взаимодействия сероводорода и цинка:
В результате реакции образуются сульфид цинка и водород.
8. реакция взаимодействия сероводорода и алюминия:
В результате реакции образуются сульфид алюминия и водород.
9. реакция взаимодействия сероводорода и галлия:
В результате реакции образуются сульфид галлия и водород.
10. реакция взаимодействия сероводорода и молибдена:
В результате реакции образуются сульфид молибдена и водород.
11. реакция взаимодействия сероводорода и бария:
В результате реакции образуются сульфид бария и водород.
12. реакция взаимодействия сероводорода и магния:
В результате реакции образуются сульфид магния и водород.
13. реакция взаимодействия сероводорода и германия:
В результате реакции образуются сульфид германия и водород.
14. реакция взаимодействия сероводорода и кобальта:
В результате реакции образуются сульфид кобальта и водород.
15. реакция взаимодействия сероводорода и серебра:
В результате реакции образуются сульфид серебра и водород.
16. реакция взаимодействия сероводорода и оксида лития:
В результате реакции образуются сульфид лития и вода.
17. реакция взаимодействия сероводорода и оксида цинка:
ZnO + H2S ZnS + H2O (t = 450-550 °C).
В результате реакции образуются сульфид цинка и вода.
18. реакция взаимодействия сероводорода и оксида железа:
В результате реакции образуются сульфид железа и вода.
19. реакция взаимодействия сероводорода и оксида молибдена:
В результате реакции образуются сульфид молибдена и вода.
20. реакция взаимодействия сероводорода и гидроксида натрия:
В результате реакции образуются сульфид натрия и вода. В ходе реакции используется концентрированный раствор гидроксида натрия.
21. реакция взаимодействия сероводорода и гидроксида бария:
В результате реакции образуются сульфид бария и вода. В ходе реакции используется разбавленный раствор сероводорода.
22. реакция взаимодействия сероводорода и гидроксида меди:
В результате реакции образуются сульфид меди и вода. В ходе реакции используется насыщенный раствор сероводорода и гидроксид меди в виде суспензии.
23. реакция взаимодействия сероводорода и азотной кислоты:
В результате реакции образуются сера, оксид азота и вода. В ходе реакции используется насыщенный раствор сероводорода и концентрированный холодный раствор азотной кислоты.
Аналогичные реакции протекают и с другими минеральными кислотами.
24. реакция взаимодействия сероводорода и карбоната кальция:
В результате реакции образуются сульфид кальция, оксид углерода и вода.
25. реакция взаимодействия сероводорода и карбоната бария:
В результате реакции образуются сульфид бария, оксид углерода и вода.
26. реакция взаимодействия сероводорода и карбоната натрия:
В результате реакции образуются гидросульфид натрия и гидрокарбонат натрия. В ходе реакции используется насыщенный раствор сероводорода.
27. реакция взаимодействия сероводорода и нитрата серебра:
В результате реакции образуются сульфид серебра и азотная кислота. В ходе реакции используется насыщенный раствор сероводорода.
28. реакция взаимодействия сероводорода и нитрата висмута:
В результате реакции образуются сульфид висмута и азотная кислота. В ходе реакции используется насыщенный раствор сероводорода.
29. реакция взаимодействия сероводорода и нитрата свинца:
В результате реакции образуются сульфид свинца и азотная кислота. Данная реакция является качественной реакцией на сероводород. В результате реакции образуются соль свинца – сульфид свинца черного цвета, который выпадает в осадок.
30. реакция термического разложения сероводорода:
В результате реакции образуются водород и сера. В ходе реакции используется насыщенный раствор сероводорода.
Применение сероводорода:
Из-за своей токсичности сероводород находит ограниченное применение:
В последние годы рассматривается возможность использования сероводорода, накопленного в глубинах Чёрного моря, в качестве энергетического (сероводородная энергетика) и химического сырья.