итер что это значит
Итер что это значит
международный термоядерный экспериментальный реактор
англ.: ITER, international thermonuclear experimental reactor
аббревиатура ITER одновременно является латинским словом iter (путь)
Смотреть что такое «ИТЕР» в других словарях:
итерқұл — (Гур., Маңғ.) балық тұздағанда аударыстырып, араластыратын құрал. Болатқа и т е р қ ұ л д ы бер, тездетіп жазсын (Гур., Маңғ.) … Қазақ тілінің аймақтық сөздігі
Итер-пиша — Итер пиша царь Исина, правил приблизительно в 1834 1831 годах до н. э. Вёл войну с вождём аморейского племени ямутбала Кудурмабугом, который к этому времени подчинил своей власти царства Ларсу и Казаллу. В ходе этой войны… … Википедия
итеріспек — зат. Көп адамның бірінбірі итеріп, тықсырысуы; бір бірімен соқтығысуы. Қалың и т е р і с п е к к е алдымен қолы жетіп қалған кейбіреулері масайрап, қылта мойнынан қысқан көк шыныларын жарқ жұрқ еткізіп, ойқастап шыға берді (Б. Шаханұлы, Таңд., 1 … Қазақ тілінің түсіндірме сөздігі
Итерпиша — Итер пиша царь Исина (ок. 1834 1831 гг. до н. э.). Вёл войну с вождём аморейского племени ямутбала Кудурмабугом, который к этому времени подчинил своей власти царства Ларсу и Казаллу. В ходе этой войны священный город Ниппур, несколько раз… … Википедия
итератор — итер атор, а … Русский орфографический словарь
итерация — итер ация, и … Русский орфографический словарь
ИТЭР — ИТЕР ИТЭР международный термоядерный экспериментальный реактор англ.: ITER, international thermonuclear experimental reactor аббревиатура ITER одновременно является латинским словом iter (путь) http://www.iter.org/ англ. ИТЭР Источник:… … Словарь сокращений и аббревиатур
плавать — аю укр. плавати, ст. слав. плавати πλεῖν (Супр.), болг. плавам, словен. plavati, рlа̑vаm, чеш. plavati, слвц. рlavаt᾽. Преобразовано из итер. *plaviti (см. след.) под влиянием итер. форм на vati; см. Траутман, ВSW 223; Бёме, Асtiоnеs 15. Ср.… … Этимологический словарь русского языка Макса Фасмера
Итер что это значит
ITER (ИТЭР) — проект международного экспериментального термоядерного реактора.
Первоначально название ITER было образовано как сокращение английского названия International Thermonuclear Experimental Reactor. В настоящее время оно, официально, не считается аббревиатурой, а связывается с лат. iter — путь.
Задача ИТЭР заключается в демонстрации возможности коммерческого использования термоядерного реактора и решении физических и технологических проблем, которые могут встретиться на этом пути.
В настоящее время проектирование реактора полностью закончено и выбрано место для его строительства — исследовательский центр Кадараш (фр. Cadarache), на юге Франции, в 60 км от Марселя.
Содержание
Страны-участницы
История
Строительство
Подготовка строительной площадки в Кадараш на юге Франции началась в январе 2007 года. Это важный первый этап в длительном десятилетнем строительном процессе, который подразделяется на две основных фазы:
Подготовка площадки
Сооружения ITER будут располагаться в общей сложности на 180 га земли коммуны Сен-Поль-ле-Дюранс (Прованс-Альпы-Лазурный берег, регион южной Франции), которая уже стала домом для французского ядерного научно-исследовательского центра СЕА (Commissariat à l’énergie atomique, Комиссариат атомной энергетики).
Наиболее важная часть ITER — сам токамак и все служебные помещения — будут располагаться на площадке в 1 километр длинной и 400 метров шириной. Предполагается, что строительство продлится до 2017 года. Основная работа на этом этапе выполняется под руководством французского агентства ITER, а в сущности CEA.
Технические данные
ITER относится к термоядерным реакторам типа «токамак». Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона.
Проектные характеристики
Общий радиус конструкции | 10,7 м |
Высота | 30 м |
Большой радиус плазмы | 6,2 м |
Малый радиус плазмы | 2,0 м |
Объём плазмы | 837 м 3 |
Магнитное поле | 5,3 Тл |
Максимальный ток в плазменном шнуре | 15 МА |
Мощность внешнего нагрева плазмы | 40 МВт |
Термоядерная мощность | 500 МВт |
Коэффициент усиления мощности | 10x |
Средняя температура | 100 MК |
Продолжительность импульса | > 400 c |
Финансирование
Стоимость проекта оценивается в 12 млрд. долларов. Доли участников распределятся следующим образом:
Радиационная безопасность
Термоядерный реактор намного безопасней ядерного реактора в радиационном отношении. Прежде всего, количество находящихся в нем радиоактивных веществ сравнительно невелико. Энергия, которая может выделиться в результате какой-либо аварии тоже мала, и не может привести к разрушению реактора. При этом, в конструкции реактора есть несколько естественных барьеров, препятствующих распространению радиоактивных веществ. Например, вакуумная камера и оболочка криостата должны быть герметичными, иначе реактор просто не сможет работать. Тем не менее, при проектирования ITER большое внимание уделялось радиационной безопасности, как при нормальной эксплуатации, так и во время возможных аварий.
Есть несколько источников возможного радиоактивного загрязнения:
Для того, чтобы предотвратить распространение трития и пыли, если они выйдут за пределы вакуумной камеры и криостата, специальная система вентиляции будет поддерживать в здании реактора пониженное давление. Поэтому из здания не будет утечек воздуха, кроме как через фильтры вентиляции.
При строительстве реактора, где только возможно, будут применяться материалы, уже испытанные в ядерной энергетике. Благодаря этому, наведенная радиоактивность будет сравнительно небольшой. В частности, даже в случае отказа систем охлаждения, естественной конвекции будет достаточно для охлаждения вакуумной камеры и других элементов конструкции.
Оценки показывают, что даже в случае аварии, радиоактивные выбросы не будут представлять опасности для населения и не вызовут необходимости эвакуации.
ИТЭР — международный термоядерный реактор (ITER)
ИТЭР — международный термоядерный реактор (ITER)
Потребление энергии человечеством растет с каждым годом, что подталкивает сферу энергетики к активному развитию. Так с возникновением атомных станций количество вырабатываемой энергии по всему миру значительно возросло, что позволило благополучно расходовать энергию на все потребности человечества. К примеру, 72,3 % от вырабатываемой электроэнергии во Франции приходится на атомные станции, в Украине — 52,3 %, в Швеции — 40,0 %, в Великобритании — 20,4 %, в России — 17,1 %. Однако, технологии не стоят на месте, и чтобы угодить дальнейшим энергетическим потребностям стран будущего, ученые работают над рядом инновационных проектов, одним из которых является ИТЭР — международный термоядерный реактор (ITER, International Thermonuclear Experimental Reactor).
Компьютерная модель ITER
Преимущества и недостатки
Хотя рентабельность данной установки еще находится под вопросом, согласно работам многих исследователей – создание и последующее развитие технологии управляемого термоядерного синтеза может в результате дать мощный и безопасный источник энергии. Рассмотрим некоторые положительные стороны подобной установки:
Термоядерный реактор — вид изнутри
Однако, существует также ряд технических недоработок, с которыми постоянно сталкиваются исследователи.
Например, нынешний вариант топлива, представленный в виде смеси дейтерия и трития, требует разработки новых технологий. Например, по окончанию первой серии тестов на крупнейшем на сегодняшней день термоядерном реакторе ДЖЕТ, реактор стал настолько радиоактивным, что далее потребовалась разработка специальной роботизированной системы обслуживания для завершения эксперимента. Другим неутешительным фактором работы термоядерного реактора является его КПД – 20%, в то время как КПД АЭС – 33-34%, а ТЭС — 40%.
Термоядерный реактор ДЖЕТ
Создание проекта ИТЭР и запуск реактора
Проект ITER берет свое начало в 1985-м году, когда Советский Союз предложил совместное создание токамака — тороидальной камеры с магнитными катушками, которая способно удерживать плазму при помощи магнитов, тем самым создавая условия, требуемые для протекания реакции термоядерного синтеза. В 1992-м году было подписано четырехстороннее соглашение о разработке ИТЕР, сторонами которого выступили ЕС, США, Россия и Япония. В 1994-м году к проекту присоединилась Республика Казахстан, в 2001-м – Канада, в 2003-м – Южная Корея и Китай, в 2005-м — Индия. В 2005-м году было определено место для постройки реактора – исследовательский центр ядерной энергетики Кадараш, Франция.
Строительство реактора началось с подготовки котлована для фундамента. Так параметры котлована составили 130 х 90 х 17 метров. Весь комплекс с токамаком будет весить 360 000 тонн, из которых 23 000 тонн приходится на сам токамак.
Различные элементы комплекса ИТЕР будут разрабатываться и доставляться на место строительства со всех уголков мира. Так в 2016-м году в России была разработана часть проводников для полоидальных катушек, которые далее отправились в Китай, который будет производить сами катушки.
Очевидно, столь масштабную работу совсем непросто организовать, ряд стран неоднократно не поспевали за поставленным графиком проекта, в результате чего запуск реактора постоянно переносился. Так, согласно прошлогоднему (2016 г.) июньскому сообщению: «получение первой плазмы запланировано на декабрь 2025-го года».
Строительство ИТЭР в 2016 году
Механизм работы токамака ITER
Термин «токамак» происходит из русского акронима, который обозначает «тороидальная камера с магнитными катушками».
Сердцем токамака является его вакуумная камера в форме тора. Внутри, под воздействием экстремальной температуры и давления, газообразное водородное топливо становится плазмой — горячим электрически заряженным газом. Как известно, звездное вещество представлено плазмой, а термоядерные реакции в ядре Солнца протекают как раз в условиях повышенной температуры и давления. Подобные условия для формирования, удержания, сжатия и разогрева плазмы создаются посредством массивных магнитных катушек, которые расположены вокруг вакуумного сосуда. Воздействие магнитов позволит ограничить горячую плазму от стен сосуда.
Модель формирования плазменного шнура в ИТЭР
Перед началом процесса воздух и примеси удаляются из вакуумной камеры. Затем заряжаются магнитные системы, которые помогут контролировать плазму, и вводится газообразное топливо. Когда через сосуд проходит мощный электрический ток, газ электрически расщепляется и становится ионизированным (то есть электроны покидают атомы) и образует плазму.
По мере того, как частицы плазмы активируются и сталкиваются, они также начинают нагреваться. Вспомогательные методы нагрева помогают привести плазму к температурам от 150 до 300 миллионов ° C. Частицы, «возбужденные» до такой степени, могут преодолеть свое естественное электромагнитное отталкивание при столкновении, в результате таких столкновений высвобождается огромное количество энергии.
Основные элементы конструкции токамака
Конструкция токамака состоит из таких элементов:
Вакуумный сосуд
Бланкет
Токамак в разрезе. Желтым — соленоид, оранжевым — магниты тороидального поля (TF) и полоидального поля (PF), синим — бланкет, светло-синим — VV — вакуумный сосуд, фиолетовым — дивертор
Дивертор
(«пепельница») полоидального типа – устройство, основной задачей которого является «очищение» плазмы от грязи, возникающей в результате нагрева и взаимодействия с ней стенок камеры, покрытых бланкетом. При попадании подобных загрязнений в плазму, они начинают интенсивно излучать, вследствие чего возникают дополнительные радиационные потери. Располагается в нижней части токомака и при помощи магнитов направляет верхние слои плазмы (которые являются наиболее загрязненными) в охлаждающую камеру. Здесь плазма охлаждается и превращается в газ, после чего откачивается из камеры обратно. Бериллиевая пыль, после попадания в камеру – практически неспособна вернуться обратно в плазму. Таким образом загрязнение плазмы остается лишь на поверхности и не проникает вглубь.
Криостат
– крупнейший компонент токомака, который представляет собой оболочку из нержавеющей стали объемом 16 000 м 2 (29,3 х 28,6 м) и массой 3 850 т. Внутри криостата будут располагаться прочие элементы системы, а сам он служит барьером между токамаком и внешней средой. На его внутренних стенках будут расположены тепловые экраны, охлаждаемые циркулирующим азотом при температуре 80 К (-193,15 °C).
Криостат и части токамака ИТЭР
Магнитная система
– комплекс элементов, служащих для удержания и контроля плазмы внутри вакуумного сосуда. Представляет собой набор из 48 элементов:
Различные магниты в конструкции токамака
Структура комплекса ИТЕР
Вышеописанная «в двух словах» конструкция токамака представляет собой сложнейший инновационный механизм, собираемый усилиями нескольких стран. Однако, для ее полноценной работы требуется целый комплекс построек, расположенных вблизи токамака. В их числе:
Элементы комплекса ИТЭР
Финансирование ИТЭР
Международный термоядерный реактор ITER – достаточно дорогое мероприятие, которое изначально оценивалось в 12 миллиардов долларов, где на Россию, США, Корею, Китай и Индию приходится в 1/11 части суммы, на Японию – 2/11, а на ЕС — 4/11. Позже эта сумма возросла до 15 миллиардов долларов. Примечательно, что финансирование происходит посредством поставки требуемого для комплекса оборудования, которое развито в каждой из стран. Так, Россия поставляет бланкеты, устройства нагрева плазмы и сверхпроводящие магниты.
Компоненты токамака и страны их производства
Перспектива проекта
В данный момент происходит постройка комплекса ИТЭР и производство всех требуемых компонентов для токамака. После запланированного запуска токамака в 2025-м году начнется проведение ряда экспериментов, на основе результатов которых будут отмечены аспекты, требующие доработки. После успешного ввода в строй ИТЭР планируется постройка электростанции на основе термоядерного синтеза под названием DEMO (DEMOnstration Power Plant). Задача DEMo состоит в демонстрации так называемой «коммерческой привлекательности» термоядерной энергетики. Если ITER способен вырабатывать всего 500 МВт энергии, то DEMO позволит непрерывно генерировать энергию в 2 ГВт.
Однако, следует иметь ввиду, что экспериментальная установка ИТЭР не будет вырабатывать энергию, а ее предназначение состоит в получении чисто научной выгоды. А как известно, тот или иной физический эксперимент может не только оправдать ожидания, но также и принести человечеству новые знания и опыт.
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!
Когда будет термояд: 500-мегаваттный проект ITER глазами участника
Если объяснять на пальцах, термоядерный реактор — это когда в магнитном поле удерживают плазму с температурой в 150 раз выше, чем на Солнце, а в трех метрах от нее находится охлаждающий контур гигантских катушек с температурой почти абсолютный ноль по Кельвину. По факту получаем самую горячую и самую холодную точки в галактике под одним колпаком. В реакторе два изотопа водорода «сплавляются» в гелий, высвобождая нейтрон, обладающий огромной энергией. По сути, это Солнце на Земле.
ITER — международный проект по созданию опытного реактора мощностью 500 МВт, который официально перешел из стадии строительства на стадию сборки.
Виталий Красильников — наш рассказчик, работает на проекте уже семь лет.
Виталий родом из Троицка. Закончил троицкую школу № 3 (теперь это лицей), отучился на физтехе в МИФИ, выбрав по примеру отца и друзей семьи тему токамаков, а после работал в научном центре ТРИНИТИ. Откликнулся на интересную вакансию в ITER и в данный момент участвует в строительстве самого большого токамака из когда-либо спроектированных человеком. С конца прошлого года Виталий вместе с коллегами курирует разработку нейтронных диагностик.
В августе при поддержке нашей троицкой Точки Кипения он провел вебинар «Когда будет термояд?». В основе этой статьи обработанная расшифровка его лекции и последующей сессии вопросов — ответов.
Итак, давайте поговорим о термоядерном синтезе.
Была такая шутка: в каком бы году вы ни спросили, когда будет термояд, вам отвечают — через 10 лет. Сегодня эти прогнозы по срокам мы формулируем на основе проекта ITER — International Thermonuclear Experimental Reactor (Международного экспериментального термоядерного реактора). Сейчас это знамя, под которым ведутся все основные разработки в данной области.
В пике ITER должен производить 500 МВт ядерной мощности — в 10 раз больше, чем требуется для его работы. Это один из самых амбициозных энергетических проектов. Сегодня в нем участвуют семь стран-партнеров, представляющих больше 50% населения планеты: страны ЕС (выступают как единый участник), Китай, Индия, Япония, Россия, Корея и США. Со стороны проект поддерживают Австралия и Казахстан.
Базовые принципы работы термоядерной установки
Для неподготовленной части аудитории сделаю небольшое отступление об основных идеях, заложенных в ITER.
Экспериментальный реактор строится для изотопов водорода — дейтерия и трития. Если у обычного водорода ядро состоит из одного протона, то ядро дейтерия содержит один протон и один нейтрон, а ядро трития — один протон и два нейтрона. В результате реакции дейтерия и трития получается сложное ядро из пяти элементов, которое разваливается на гелий и нейтрон.
Ядерная реакция дейтерия и трития с образованием гелия и свободного нейтрона
Гелий — инертный газ, который ничем не вредит. У свободного нейтрона короткое время жизни, он сам по себе не опасен. Но он обладает большой энергией, поэтому нейтрон необходимо каким-то образом поймать и затормозить, а его кинетическую энергию применить с пользой. Один из вариантов — нагреть воду, создать турбину и преобразовать эту энергию в электричество.
Чтобы соединить дейтерий и тритий, их нужно разогнать навстречу друг другу. В больших объемах это можно сделать, нагрев смесь двух газов. Но чтобы реализовать эту реакцию в масштабах ITER (получив заданное отношение затрачиваемой и полезной мощности), по предварительным расчетам, придется нагреть смесь до 100–200 млн градусов (по Кельвину или Цельсию — уже не важно). Для сравнения: на Солнце всего 10 млн градусов, т.е. температура внутри экспериментального реактора должна быть в 10–20 раз выше.
Чтобы удержать плазму такой температуры в замкнутом объеме, можно использовать электрические и магнитные поля.
Один из подходящих инструментов предложили еще в Советском Союзе — это тороидальная камера, получившая название «токамак».
Термоядерный реактор ITER в разрезе
Токамак представляют собой магнитную катушку, где магнитные поля сформированы таким образом, что удерживают плазму в неком объеме внутри «бублика».
Огромные перспективы термоядерного синтеза стоят на трех столпах.
ITER: диаметр 28 метров, высота — 30 метров. Масса — 30 тысяч тонн
Вот так выглядит ITER. Токамак размещен в колбе, она называется криостат. Это внешняя оболочка, которая охлаждает сверхпроводники катушек, создающих магнитное поле.
Внутри токамака необходимо создать температуру в 100 раз выше температуры Солнца — это будет самая горячая точка нашей Галактики. А снаружи будет одна из самых холодных точек — 4 градуса по Кельвину.
Расстояние между самой горячей и самой холодной точками — всего несколько метров.
Когда технологии не поспевают за теорией
Практически по всем направлениям разработки ITER мы сталкиваемся с проблемами, которые еще никто никогда не решал.
К примеру возьмем электронику, предназначенную для работы в вакууме и использующуюся для космических целей. Однако у нее нет защиты от радиации, которой в космосе почти нет. Существуют радиационно стойкая сталь и электроника для атомных реакторов, но они неспособны работать в вакууме (таких требований в реакторах просто не было). А значит, нужны новые, устойчивые и к вакууму, и к радиации материалы.
Еще пример — нейтронные детекторы, которыми я занимаюсь. Для ITER нам нужно несколько сотен детекторов, по 10 кристаллов в каждом. Нынешними темпами мир выращивает примерно 10–50 кристаллов в год, а к 2025-му нужно будет получить около 2000 кристаллов. Этот спрос неспособны удовлетворить имеющиеся установки. Несколько западных лабораторий работают над тем, чтобы доработать технологию.
И подобные примеры можно приводить бесконечно.
Краткая история ITER
Впервые о проекте ITER публично заговорили в 1985 году на саммите в Женеве — на пике оттепели международных отношений. США и СССР — в лице Горбачева и Рейгана — договорились о совместных разработках в области термоядерного синтеза. А крестным отцом ITER, пожалуй, можно назвать Е.П. Велихова — советского ученого, который предложил эту идею Горбачеву.
Встреча Рейгана и Горбачева на саммите в Женеве, 1985 г.
Некоторое время достигнутая договоренность существовала в эдаком вакууме, но в начале 2000-х к ней вернулись.
Когда в ноябре 2006 года в Елисейском дворце было подписано соглашение между семью странами-участниками, стало понятно, что проект ITER будет реализован.
Строительные работы на площадке начались в 2007 году. К 2010-му на территории уже вырубили лес, выровняли землю, построили несколько зданий. Начали рыть котлован под токамак-комплекс. На фото видны автомобили и домики. Площадь вырытого котлована — размером с городской квартал.
В 2011-м начали заливать фундамент.
Ниже на фото — активные сейсмические подставки. Они заменяемые: если одна из них выйдет из строя, специальный робот залезет под здание и произведет замену.
Сверху бетонной плиты — специальная противосейсмическая раскладка арматуры, которая будет заливаться бетоном.
Я приехал на проект в 2013 году. Тогда все строительство шло под землей и выглядело примерно так:
С конца 2014 года началось возведение стен над землей. На фото ниже — Assembly Building. В него для предварительной сборки будут попадать все крупные компоненты системы, а в здание токамака их перенесут с помощью большого крана.
А это подстанция высокого напряжения и трансформаторы.
В 2015 году Assembly Building обернули во внешние стены.
А это фото 2016 года:
А на фото ниже хорошо виден прогресс с 2014 года по весну 2020-го. Фото сделаны с разных ракурсов, но на них заметны существенные улучшения.
А вот так проект выглядит сегодня:
Здание токамака из бетона со стенами толщиной 1-1,5 м закончили 18 июня 2020-го (металлическая конструкция сверху — временная)
Еще несколько фото прогресса. Первый кадр снят внутри токамак-здания. Под этой крышкой будет размещаться токамак ITER. Вдали видно здание сборки и перемещаемый кран.
А это основание криостата. Оно уже установлено туда, где будет собираться токамак.
В начале лета 2020-го проект ITER официально перешел из стадии строительства на стадию сборки. Мы чуть ли не каждую неделю принимаем на стройплощадке большие элементы токамака: катушки, части вакуумной камеры. И это новый вызов. Огромные компоненты предстоит подгонять с точностью часового механизма. К примеру, допуски изготовления вакуумной камеры (30-метровой конструкции весом чуть меньше килотонны) — 1 мм. Возможно, оборудование придется подгонять под неточные размеры компонентов.
А параллельно идет постоянное уточнение конструкции, переделка чертежей.
Например, электрики выяснили, что нужно использовать более толстые провода. Те, в свою очередь, не помещаются в трубопроводы, плюс придется увеличивать отверстия в стенах. А значит, вырастет поток нейтронов наружу. Итог: придется разрабатывать более стойкую к радиации электронику.
Есть такая шутка, что каждые два года проект строят заново. Но при этом ни один шаг нельзя пропустить: нельзя восемь лет ничего не делать, включившись только на финальном этапе. Необходимо пройти весь путь от начала и до конца.
Структура проекта
Как я сказал, в проекте семь участников. В соответствии с базовой договоренностью Европейский союз вкладывает 45%, остальные страны по 9%. Вкладывают деньги — в центральную организацию на юге Франции. А также оборудование (части установки) и лучшие умы.
На гистограмме ниже показано, как страны-участницы вкладываются в отдельные направления.
Под восьмой аббревиатурой JF, по всей видимости, скрывается доля других стран (Казахстан и Австралия). Это распределение довольно плоское. Направления не разделены между странами, и это осознанный шаг, чтобы знания в каждой из областей не концентрировались в одних руках. Все делают понемногу. Например, Россия отвечает за верхние патрубки вакуумной камеры. Также она делает несколько диагностических систем.
Тут видно, что Россия поставляет катушки тороидального поля, часть диверторов, несколько модулей термозащиты, часть вакуумной камеры
Важный момент, на котором я хотел бы остановиться, — это организация процессов в ITER.
В центре структуры — генеральный директор ITER Organization, над ним — совет ITER, в который входят представители всех партнеров, участвующих в проекте. Правительства стран — участниц проекта на схеме показаны зеленым.
Совет управляет всем процессом, диктуя свои решения директору. Тот, в свою очередь, воплощает их в реальность, управляя рядом департаментов. На схеме их всего три, в реальности же их намного больше.
Департаменты общаются с локальными агентствами стран-участниц (иногда их называют домашними агентствами), а те взаимодействуют с лабораториями и индустрией — именно они строят компоненты токамака и поддерживающих систем.
Некоторые подсистемы изготавливает ITER напрямую, но большая часть все же проходит через всю цепочку — от директора до завода в конкретной стране.
Как видно из схемы, линейное управление проектом отсутствует. Локальные агентства имеют выход на свои правительства, и цепь замыкается. Эта нелинейность — важная особенность ITER: в любом вопросе участвуют разные стороны.
Для ITER определено четыре основных этапа.
Так называемая Stage Approach Configuration должна дать первую плазму к декабрю 2025 года. Эту дату установили несколько лет назад, и она не сдвигается, несмотря на коронавирус и политические изменения.
В этой конфигурации ITER будет функционировать всего полгода. Мы называем эту стадию «политической плазмой»: на малой мощности она поможет нам проверить вакуумную камеру, систему нагрева, магниты. В итоге мы должны понять, что вакуумная камера работает и плазма создается.
Далее начнется досборка тонких систем, в том числе системы нагрева плазмы. По мере сборки запланированы Prefusion power operation 1 и 2 на 2028 и 2032 годы соответственно.
Выход на максимальную мощность — в декабре 2035 года. После 2035 года ITER будет функционировать в научных целях еще 10 лет. Планируется 5,5 тыс. разрядов в 500 МВт по 500 секунд.
Вместо итогов
На данном этапе речь не идет о коммерческом производстве электроэнергии путем термоядерного синтеза. Нейтроны не будут захватываться, а их энергия не будет преобразовываться в электричество. Нейтроны будут выходить из установки, и их будут задерживать бетонные стены здания. Частицы будут проникать в комнаты и ячейки, поэтому во время работы установки людей в здании не будет. А механические свойства материалов, подвергающихся постоянной бомбардировке нейтронами, конечно, рассчитывают с учетом планируемого срока эксплуатации установки (полный выход нейтронов за все время работы установки — порядка 10 21 ).
В теории есть несколько способов использовать кинетическую энергию нейтронов во благо. Один я уже упоминал — нагреть воду и поставить турбину. Второй путь — гибридный. Небольшой токамак можно обложить ураном-238 и использовать нейтроны для поддержания реакции распада урана. Масса урана при этом может быть много меньше критической, т.е. взрыва не произойдет ни при каких условиях. Если что-то пойдет не так в такой гибридной установке, реакция просто затухнет. Уран будет работать только за счет того, что его бомбардируют нейтроны, которые появляются, когда идет термоядерная реакция. И хотя такая станция производит радиоактивные отходы, она безопасна — не может взорваться.
Но финальная цель — это, конечно, чистый термояд, где нет урана и ядерных отходов. Это единственно правильная цель, но путь к ней долгий и сложный. Если ITER выполнит свою функцию и к 2035–2045 годам ответит на вопрос, можно ли получить выход энергии в 10 раз больше, чем затрачено, мы начнем строить демонстрационную станцию. В лучшем случае к 2050-му она даст ответ, будет ли коммерческий старт у проекта.
Однако двигаться в этом направлении надо. И ITER — это выгодная сделка. Каждый участник вкладывает 9%, но получает 100% разработок. По сути, это большой учебный проект для всех стран, который стоит намного дороже, чем любые коммерческие разработки. Но, несмотря на это, проект идет согласно графику и не обманывает ожидания. С каждым годом ему все больше доверяют, а значит, дальше работа должна пойти лучше и быстрее.
Основной этап строительства ITER завершен. Настал черед сборки реактора (фото — март 2020-го)
В общем, это будет подарок нашим внукам. О том, как продвигается проект, рассказывают на YouTube-канале ITER Organization.