что не влияет на прочность конструкции кузова
Безопасная конструкция кузова автомобиля
Конструкция кузова автомобиля (рис. 1) должна отвечать многим требованиям. С одной стороны, необходимо снижать его массу и улучшать аэродинамические качества, с другой стороны, все большее значение приобретают факторы пассивной безопасности автомобиля.
Рис. 1. Кузов легкового автомобиля: 1 — подоконная балка; 2 — передняя балка крыши; 3 — лонжерон крыши; 4 — задняя балка крыши; 5 — задняя стойка кузова; 6 — задняя панель; 7 — пол в задней части кузова; 8 — задний лонжерон; 9 — средняя стойка кузова; 10 — поперечина под задним сиденьем; 11 — передняя стойка; 12 — поперечина под сиденьем водителя; 13 — порог; 14 — надколесная ниша; 15 — поперечная балка опор двигателя; 16 — передний лонжерон; 17 — поперечина передняя; 18 — поперечина радиатора
Кузов относится к элементу пассивной безопасности автомобиля и, чтобы в случае ДТП максимально снизить вероятность травм и летальных исходов, должен выполнять основные требования:
Жесткая конструкция салона кузова — основа безопасности при аварии. Для достижения высокой прочности кузова используются чрезвычайно прочные материалы, особенно в пассажирском пространстве, где допускаются только минимальные деформации. Чтобы удовлетворить противоречивые требования, конструкцию автомобиля совершенствуют в следующих направлениях:
Для выдерживания внешних нагрузок в легковых автомобилях используются преимущественно несущие кузова. Несущий кузов достаточно легкий, однако благодаря целостной конструкции обладает значительной жесткостью на кручение и на изгиб. Он представляет собой сочетание тонких стальных штампованных листов различной формы, соединенных вместе точечной сваркой.
Передняя и задняя части автомобиля обеспечивают максимальное поглощение энергии во время аварии. Специальные опоры двигателя не допускают его перемещения в салон. Деформация передней и задней частей автомобиля обеспечивается путем продольного складывания, так называемой «гармошки». Для этого коробчатые профили, из которых изготавливается кузов, имеют углубления и выступы в определенных расчетных местах — точках концентрации напряжений.
При фронтальном столкновении особое внимание уделяется минимизации смещения элементов конструкции автомобиля в пространство для ног водителя и пассажира.
Требования к прочности кузова при ударе сзади состоят из жесткости каркаса салона и деформируемости задней части кузова. Защита топливной системы от удара сзади обеспечивается геометрией задней подвески и расположением топливного бака.
При боковом столкновении важнейшими конструктивными элементами, воспринимающими основную энергию бокового удара, являются средняя стойка и двери. При их изготовлении используются сверхвысокопрочные материалы. Центральным звеном системы является средняя стойка, которая переносит возникающие силы на порог и каркас крыши. Двери, усиленные диагональными брусьями безопасности, также гасят чрезмерную энергию столкновения. Таким образом, при боковом столкновении достигается невысокая скорость смятия и минимальное смещение конструктивных элементов внутрь салона.
При расчете передней части автомобиля учитываются дополнительные силы инерции и жесткость таких элементов, как двигатель и колеса.
Первоначальной целью конструкторов является проектирование такого автомобиля, чтобы его внешняя форма способствовала минимизации последствий при основных видах ДТП (при столкновениях, наездах, а также при повреждениях самого транспортного средства).
Наиболее тяжелым травмам подвергаются пешеходы, которые наталкиваются на переднюю часть автомобиля. Последствия столкновения с участием легкового автомобиля могут быть уменьшены лишь конструктивными мерами, которые включают:
Определяющими факторами обеспечения безопасности пассажиров являются:
Рис. 3. Распределение сил при ударе: а — боковой удар; б — лобовой удар
Чтобы силовая конструкция кузова могла соответствовать предъявляемым требованиям, в ней используются прочные и особо прочные стали.
Одним из способов повышения безопасности при изготовлении кузовов является применение многофункциональных литых узлов, имеющих оптимизированные по толщине и массе стенки, а также оптимизированную общую конфигурацию. Такие узлы изготовлены из алюминиевых сплавов и отливаются в вакууме. Эти детали обладают не только высокой прочностью, но и высокой пластичностью. Поэтому их используют преимущественно в составе узлов, заведомо деформируемых при ДТП, например в виде лонжеронов, опор амортизаторных стоек, а также передних и центральных стоек кузова. Например, отливаемый в вакууме лонжерон (рис. 4) обладает рядом преимуществ по сравнению с лонжероном, изготовляемым по обычной технологии. Обе половины лонжерона оптимизированы по толщине стенок, а их конструкция и размещение ребер рассчитаны на строго определенные деформации. Места крепления подвески на нижних частях лонжеронов сконструированы так, что энергия удара расходуется прежде всего на деформацию лонжеронов, а не относительно жесткого подрамника. Обе литые части лонжерона образуют многофункциональную конструкцию: они воспринимают усилия с объединенной подвески двигателя и коробки передач, служат в качестве опор для домкрата и несут проушину для буксировки.
Рис. 4. Передний лонжерон автомобиля Audi A2, установленный на болтах: 1 — лонжерон; 2 — подрамник
Фирма Faurecia разработала механизм для предотвращения последствий бокового удара (рис. 5). Механизм начинает работать за 0,2 с до столкновения по коду специальных сенсоров. По команде контроллера уже через 60 мс удлиняется изготовленный из сплава «с памятью» (Shape Memory Alloy) стержень 2, установленный под сиденьями поперек кузова автомобиля, выдвигая стальной штырь почти до самой двери. Одновременно срабатывает механизм внутри двери, поворачивая в рабочее положение упор 3. Теперь при боковом ударе дверь не сможет вмяться внутрь кузова. Указанный механизм позволяет уменьшить деформацию двери внутрь кузова на 70 мм.
Рис. 5. Механизм для предотвращения последствий бокового удара: а — исходное состояние механизма; б — рабочее состояние механизма; 1 — штырь; 2 — стержень; 3 — поворотный упор; 4 — возвратная пружина
Работа механизма обратима, так как в нем нет одноразовых пиропатронов. Если аварии не случилось, штанга укоротится до исходной длины, а пружина подтянет штырь обратно.
В процессе разработки кузова, наряду с безопасностью пассажиров, все большее внимание уделяется безопасности пешеходов. Для снижения риска травматизма пешеходов в переднем бампере автомобиля используется эластичный ударопоглощающий (защитный) элемент. Он позволяет достичь определенной зоны деформации передней части кузова при ударе.
Особенностями пассивной безопасности легковых автомобилей с кузовом «кабриолет», у которых отсутствует крыша, является защита пассажиров при опрокидывании автомобиля. В таких автомобилях усилены стойки и двери. Кроме того, за подголовниками задних сидений расположено по одному активному элементу безопасности. Вместе с усиленными стойками активные элементы обеспечивают защиту пространства для выживания при опрокидывании автомобиля (рис. 6).
В состоянии покоя электромагниты элемента безопасности обесточены и удерживают элементы с помощью фиксирующей планки во вдвинутом положении. Если блок управления подушек безопасности распознает столкновение или угрозу опрокидывания автомобиля, на электромагниты подается напряжение и они освобождают элементы безопасности. Находящиеся в сжатом состоянии пружины распрямляются и выдвигают элементы безопасности за 0,25 с.
Рис. 6. Защита пассажиров при опрокидывании автомобиля на примере Volkswagen EOS: 1 — элемент безопасности в исходном положении; 2 — элемент безопасности после срабатывания
Выдвинутые элементы безопасности можно разблокировать механически и вновь вернуть в исходное положение.
Защита при опрокидывании автомобиля срабатывает при помощи блока управления подушек безопасности при сильных лобовых, боковых и задних столкновениях, при опрокидывании автомобиля или при предельном боковом крене.
Конструкция рулевой колонки ограничивает движение рулевого колеса в случае фронтального удара. Конструкция педалей гарантирует соскальзывание в случае удара, уменьшая риск травмы ноги водителя.
Кузов — основа безопасности современного автомобиля. Сочетание специальных сминаемых зон, зон с повышенной энергоемкостью удара, успешное обеспечение прогрессивной деформации — вот лишь некоторые качества, присущие современному безопасному кузову.
Когда тяжесть аварии велика, есть вероятность того, что двигатель и (или) другие силовые агрегаты автомобиля могут проникнуть в его салон. Чтобы избежать этого, салон окружают особой «решеткой безопасности», которая помогает достичь наибольшей защиты водителя и пассажиров в подобных случаях. Такие же элементы жесткости (ребра, трубы и брусья) можно найти и в других элементах автомобиля, например в дверях (защита на случай боковых столкновений). Также в кузове присутствуют области погашения энергии.
Как правило, при тяжелой аварии автомобиль резко и неожиданно замедляется, вплоть до полной остановки. В результате этого тела водителя и пассажиров испытывают колоссальные перегрузки, и в некоторых случаях летальный исход неизбежен. Это означает, что жизненно важно найти способ, который помог бы уменьшить нагрузки на тело человека. Одним из вариантов решения этой задачи является проектирование областей разрушения, которые могли бы снижать энергию столкновения в передней и задней части кузова автомобиля. При этом разрушение автомобиля будет более сильным, так как кузов возьмет на себя значительную часть энергии удара, но пассажиры уцелеют. Обратный эффект может быть при авариях старых автомобилей, когда на машине остаются легкие царапины, а пассажиров приходится везти в реанимацию.
Конструкция современного кузова автомобиля предполагает, что при аварии определенные части кузова деформируются по отдельности.
Кроме того, в конструкции кузова широко применяются высоконапряженные листы металла, благодаря чему кузов становится более жестким, одновременно не увеличивая вес автомобиля.
Для производства кузовных элементов немецкие компании BASF и SGL разработали новый легкий и прочный материал, состоящий из полиамидной смолы и углеродного волокна. Специалисты BASF занимались разработкой новых полимерных матриц, а инженеры SGL готовили проекты термообработки нового материала при высоких температурах и сочетания его с углеродным волокном.
В конструкции новой, четвертой по счету генерации Range Rover компании Land Rover главным материалом является алюминий. Он применен как в постройке кузова, так и в деталях подвески. Новая модель получила цельный алюминиевый кузовной каркас. Благодаря этому конструкторам удалось снизить массу автомобиля на 420 кг, что на 39 % легче, чем масса стального кузова предыдущей модели.
Жесткость кузова автомобиля
На кузов автомобиля постоянно действуют различные силы, среди них и воздействие дороги и инерция и боковой ветер и т.д. Понятно, что далеко не каждое воздействие он может выдержать достаточно успешно. Для владельцев отечественных автомобилей знакома, например такая ситуация, когда после длительной стоянки на неровной поверхности в ситуации, например постановки автомобиля на домкрат начинает заклинивать двери. Для качественно изготовленного автомобиля, например, важна поэтому такая характеристика, как жесткость на скручивание, в случае если этот показатель недостаточен, то автомобиль достаточно быстро изнашивается и теряет управляемость.
Такая характеристика как жесткость кузова напрямую зависит от его типа. Самыми устойчивыми в этом плане являются купе и хэтчбеки. Их форма позволяет относительно легко противостоять нагрузкам на изгиб при прохождении поворотов. К наименее жестким относятся универсалы и микроавтобусы. При эксплуатации автомобиля с недостаточной жесткостью в первую очередь страдают передняя и задняя подвески, это происходит по причине размягчения металла в местах, где прикрепляются рычаги подвески. Кузов разрушается, начиная со сварочных швов, затем в этих местах появляются очаги коррозии, которые затем начинают расширяться все дальше и дальше.
Измеряется крутильная жесткость кузова в ньютон-метрах на градус (Нм/град.). Чем выше эта величина, тем меньше деформируется кузов от приложенной скручивающей нагрузки. Например, для автомобилей с рамной конструкцией жесткость на скручивание была невелика и редко превышала 4000 Нм/град. Несущие кузова легковых автомобилей 60—90-х годов были уже жестче — нормой считались величины 5000—10000 Нм/град. Но современные высочайшие требования к управляемости и пассивной безопасности заставляют автомобильных инженеров идти на всяческие ухищрения. Кузова автомобилей последнего поколения разрабатывают с помощью компьютерной оптимизации, а в производстве используют особо прочный металл, лазерную сварку и клееные соединения. Поэтому в технических описаниях таких машин, как Volvo, Mercedes-Benz или BMW, с гордостью упоминается о жесткости кузова свыше 20000 Нм/град.!
Интересно, как на этом фоне выглядят отечественные автомобили? Жесткость кузовов большинства вазовских машин — это и вся «классика», и все серийные переднеприводные модели — лежит в пределах 6000—8000 Нм/град. То есть гордиться вазовцам особо нечем.
Кузов автомобиля
Любой автомобиль состоит из ряда составных узлов – силовой установки, трансмиссии, ходовой части, систем управления.Чтобы собрать все эти элементы в единую конструкцию и обеспечить их взаимосвязь между собой, используется еще один конструктивный компонент – несущая часть, к которой и осуществляется крепление всех составляющих элементов.
Назначение, конструкция и виды несущей части
По мере развития автомобилестроения было создано несколько видов несущей части. Но несмотря на имеющиеся различные типы, эта составляющая включает в себя один из основных компонентов – кузов автомобиля.
В задачу кузова входит не только крепление составных частей авто, а еще и восприятие всех нагрузок и воздействий окружающей среды, а также обеспечение пространства для размещения пассажиров и груза.
Изначально на автотранспорте применялась несущая часть, состоящая из двух элементов – кузова и рамы. В такой конструкции кузов по большей части принимал на себя только нагрузки, которые создавали пассажиры и груз. Основные же воздействия приходились на раму, которая также выступала основным связующим элементом для составных частей авто (именно к ней крепились узлы и механизмы).
Но существуют и другие виды несущей части. В целом, она подразделяется на:
Рамный вид, как уже отмечено, состоит из двух элементов – рама и кузов автомобиля. Между собой эти элементы соединены посредством эластичных проставок. Изначально он применялся на всех авто. Сейчас же такую компоновку несущей части можно встретить только на грузовиках и внедорожниках (хотя на последних – не всегда). Поскольку кузов в такой конструкции не используется в качестве компонента, к которому крепятся составные элементы, второе название этого типа – с разгруженным кузовом.
Со временем на легковом транспорте рамную конструкцию вытеснил несущий кузов автомобиля. Особенность его заключается в том, что рама, как таковая, отсутствует. При этом все составные части крепятся к кузову. Но поскольку в этом типе вся нагрузка приходится на кузов, в некоторых участках присутствуют усиливающие элементы, повышающие жесткость конструкции. Сейчас этот тип несущей части используется на всех легковых авто, а также кроссоверах и некоторых внедорожниках.
Последний вид – комбинированный, он же – полунесущий кузов автомобиля, отличается тем, что в несущей части присутствуют как рама, так и сам кузов, но при этом они между собой жестко связаны. В такой компоновке воспринимаемая нагрузка распределена между ними, также оба они выступают в качестве элементов для крепления составных узлов. Этот тип несущей части применяется в автобусах.
Конструкция кузова
Как видно, во всех типах несущей части присутствует кузов автомобиля. От этого элемента во многом зависит внешний вид машины, комфортабельность, показатели безопасности. Поскольку на легковых авто наибольшее распространение получил несущий кузов, то в дальнейшем рассматривать будем именно его.
Такой кузов автомобиля представляет собой некий каркас, состоящий из ряда составных частей, к которым крепятся узлы авто, а также внешние элементы, выполняющие определенные функции, включая и декоративные – крылья, двери, капот, крышка багажника, оптические приборы, бампера и прочее.
Конструкция кузова автомобиля включает в себя:
Каждая из составных частей состоит из ряда компонентов. Все они соединены между собой при помощи сварки, что обеспечивает необходимую жесткость каркасу.
В качестве основания выступает днище, выполненное в виде щита с подогнутыми краями и проделанным в центральной части тоннелем. Этот тоннель не только повышает жесткость основы, но еще и выступает каналом для прокладки некоторых составных элементов авто – топливных и тормозных трубопроводов, труб системы отвода выхлопных газов, а в задне- и полноприводных авто – еще и для размещения ряда узлов трансмиссии. В некоторых авто в днище дополнительно проделывается ниша для размещения запасного колеса (в задней части).
Также в состав этой части входят передний щит, отделяющий мотор от салона, панель для крепления оптики и радиаторной решетки, боковины с колесными арками, которые могут быть выполнены заодно с крыльями. Но зачастую крылья делают съемными, поэтому являются навесной частью, так же, как и бампер с решеткой радиатора. Передняя часть сверху накрывается капотом – специальной крышкой.
Примерно такую же компоновку имеет и задняя часть, но зачастую крылья у нее входят в конструкцию и не являются съемными.
Дополнительно заднее крыло входит в конструкцию боковины кузова. Помимо нее боковина включает в себя пороги – одни из основных элементов, которые на ряду с лонжеронами обеспечивает жесткость конструкции.
К боковинам также относятся стойки – передняя, средняя и задняя, к которым крепиться крыша – цельноштампованный лист металла заданной формы. Съемными элементами этой составляющей являются двери авто.
В целом, днище с порогами и стойки с крышей и дверьми формируют отсек для размещения пассажиров.
Как уже отмечено крепления составных элементов осуществлено при помощи сварки, что делает конструкцию кузова неразъемной, поэтому многие компоненты одновременно относятся к нескольким его составляющим частям.
Стоит сказать, что состав кузова автомобиля может не иметь каких-то определенных частей. К примеру, в кузове кабриолет крыша отсутствует как таковая. Но поскольку в обычной компоновке нагрузка распределяется и на нее (за счет цельной конструкции), и крыша тоже в некоторой мере обеспечивает жесткость, то в кабриолете для компенсации снижения жесткости кузова усиливают пороги и двери.
Компоновка кузовов
На конструктивные особенности кузова автомобиля также влияет и компоновка. Все существующие типы несущей части по этому параметру подразделяются на:
Суть разделения кузовов авто по этому критерию сводится к тому, на сколько частей поделен кузов.
Особенность однообъемной компоновки заключается в том, что разделения между моторным отсеком, салоном и багажником – нет (но это условно). Еще этот вид компоновки называют вагонным.
В авто с таким кузовом передняя часть вообще отсутствует, а двигатель помещен в специальную нишу отсека для размещения пассажиров и груза. Отсутствие разделения между отсеками считается условным потому, что двигатель все же отделен от кабины перегородкой.
Однообъемный кузов автомобиля Tata Nano
В свою очередь однообъемный кузов делится на:
Разница между ними сводится к тому, под что большая часть внутреннего объема кузова отведена. Так, в грузовом для размещения пассажиров отведен совсем незначительный объем, в который входит также и отсек для мотора (по сути, водитель сидит возле, а то и вовсе на двигателе), а все остальное пространство отведено под размещение грузов.
В пассажирском же варианте весь доступный объем предназначен для размещения пассажиров, а под груз выделяется небольшое пространство (которого и вовсе может не быть).
Грузопассажирский кузов отличается тем, что внутренний объем условно делится на два отсека (пассажирский, грузовой). В некоторых случаях все пространство авто заполнено сиденьями для пассажиров, которые можно быстро демонтировать или сложить, тем самым получить грузовой отсек.
Двухобъемный кузов автомобиля включает в себя отдельно переднюю часть, являющуюся моторным отсеком и салон, который совмещен с отсеком для перевозки грузов. Самыми распространенными представителями такой компоновки являются хэтчбек и универсал. Также она используется у внедорожников с кроссоверами.
Двухобъемный кузов кроссовера
В большинстве случаев основная часть салона отведена под размещение пассажиров, а для груза отводится не очень много места. Но если взять универсал, то очень часто конструкторы делают задние сиденья складывающимися, что значительно повышает размеры грузового отсека, делая авто, по сути, грузопассажирским. Для доступа к грузовому отсеку в этом типе предусмотрена отдельная дверь – задняя (в некоторых авто она двойная).
Трехобъемный кузов автомобиля отличается тем, что моторный отсек, салон и грузовой отсек отделены перегородками друг от друга. Основным представителем такой компоновки является седан.
Современные реалии
Напоследок отметим, что конструкторами разработано большое количество разнообразных типов кузовов (перечисленные выше являются основными из них). Из-за этого в некоторых случаях разница между компоновками нивелируется.
К примеру, лифтбек имеет трехобъемную компоновку. Но у него крышка багажника объединена с задним стеклом, поэтому является, по сути, задней дверью. Вот и получается, что вроде и отдельный багажник есть, но в то же время он входит в состав салонного отсека (поскольку открывая багажник получаем одновременно и доступ к салону). И таких примеров несколько.
Но в целом, широкое разнообразие несущих кузовов позволяет делать автомобили разных типов и назначения.
Жесть, как она есть: всё об усилении кузова
Гулять, дышать и плавать умеет не только человек, но и кузов автомобиля. Только в случае с «железом» о здоровом образе жизни речи идти не может – все эти явления пагубны, и автопроизводители стараются их избегать. Получается не всегда, и на помощь приходит тюнинг.
Несмотря на общую целостность, кузов автомобиля представляет из себя сложную конструкцию, сваренную воедино из десятков, а иногда и сотен элементов. Прибавьте к этому действующие на него нагрузки от подвески и агрегатов, вызывающие в металле внутренние напряжения. Факторы внешней среды тоже не идут кузову на пользу и негативно отражаются на его долговечности. Резюмировав, получаем, что «скелет» автомобиля вовсе не так фундаментален, как может показаться на первый взгляд.
Почему же производители со своими астрономическими бюджетами не закладывают достаточную жёсткость кузова на стадии проектирования и производства автомобиля, оставляя поле деятельности для нас, «тюнингистов»? Во-первых, закладывают, но для обыкновенной, гражданской езды. Во-вторых, в процессе эксплуатации она теряется, равно как и из-под капота убегают отжившие своё «лошади». Наконец, инженеры-проектировщики не могут наращивать жёсткость до бесконечности, так как скованы десятками других факторов. Например, использование высокопрочных сталей наращивает массу автомобиля и удорожает производство, а отдельные элементы, такие, как передние лонжероны, в угоду пассивной безопасности должны гасить энергию удара при столкновении. Следовательно, они должны быть выполнены из мягких сплавов. Кроме того, существуют ограничения по компоновке, вынуждающие делать элементы изогнутыми, что в свою очередь снижает их жёсткость.
Итак, краеугольная величина, ради повышения которой всё затевается – жёсткость кузова на кручение вдоль продольной оси кузова автомобиля. Измеряется она в Нм/градус и показывает, какое усилие нужно приложить к кузову, чтобы изогнуть его на один градус. По современным меркам нормальным показателем для машин с несущим кузовом является 20 000 Нм/град и выше, в то время как в начале века цифры были ниже вдвое. Максимальной величиной жёсткости обладают так называемые «однообъёмники», чья силовая структура условно напоминает куб. Хуже с этим делом у трёхобъёмных машин, особенно с большим количеством дверей, так как последние не являются частью силовой структуры кузова. Самая большая проблема, следовательно, у открытых кузовов: родстеров, кабриолетов и им подобных. Именно поэтому кабриолеты зачастую тяжелее аналогичных купе – для компенсации жёсткости кузова вследствие «поехавшей крыши» их конструкция усиливается дополнительно.
Измерение жёсткости кузова на кручение – процесс многоступенчатый и любопытный. Прежде всего, опытные образцы тестируют в виртуальной среде при помощи программ, которые не предустановлены на ваших Windows и MacOS. Но наибольший интерес представляет «живой» тест. В этом случае кузов фиксируется на станине измерительного комплекса за точки крепления задней подвески. В это время на точки крепления передней подвески воздействуют мощные гидроцилиндры, которые создают усилие «на кручение» в вертикальной плоскости, но разных направлениях.
Как мы упомянули, в процессе эксплуатации жёсткость кузова неотвратимо снижается, и хороших последствий это не принесёт в любом случае. Автомобиль с «уставшим» кузовом медленнее реагирует на повороты руля, его реакции расхлябаны и неоднозначны. Кроме того, «дышащий» металл сильнее подвержен деформациям и растяжениям, а также коррозии. При подъёме на домкрате, диагональном вывешивании или заезде одним из колёс на бордюр двери из-за возникшего перекоса могут попросту не открыться… или не закрыться. Короче говоря, с недостатком жёсткости нужно бороться. Какими способами? Ниже приведём их перечень с указанием достоинств и недостатков каждого.
Распорки
Этот вариант усиления кузова, пожалуй, больше других «на слуху». Сотни тюнинговых фирм сегодня готовы предложить распорки практически на любой автомобиль. Устанавливаются такие детали в штатные места без существенных доработок, а нередко ими снабжают автомобиль, покидающий сборочный конвейер ещё на заводе. Но мы говорим про тюнинг, поэтому «стоковые» варианты рассматривать не будем. Дополнительные распорки призваны связать воедино наиболее нагруженные, а оттого и «гуляющие» элементы кузова, такие как стаканы стоек подвески, точки крепления рычагов и агрегатов.