что не реагирует с гидроксидами
Гидроксиды: физические свойства, получение, химические свойства
Гидроксиды: физические свойства, получение, химические свойства
Мы с Вами рассмотрели в предыдущих темах оксиды их свойства и получение и теперь плавно переходим к гидроксидам. На проверку знаний свойств гидроксидов нацелено 8 задание ЕГЭ по химии, ну и, конечно, вторая часть заданий ЕГЭ также может содержать хитрые вопросы, требующие знаний специфических реакций и свойств оснований.
Итак, давайте с вами вспоминать, что такое основания в принципе. Основания – это соединения, состоящие из атомов металла, связанных с одной или несколькими гидроксогруппами. (примерами могут служить гидроксид натрия, гидроксид бария, гидроксид железа)
Название основания складывается из слова гидроксид и названия металла в родительном падеже
Физические свойства оснований
Гидроксиды при комнатной температуре представляют собой твердые вещества. Делятся на малорастворимые, нерастворимые и растворимые в воде. Растворимые в воде сильные основания – это щелочи. Обладают мылкостью, разъедают ткани и кожу. Растворимым основанием также является гидроксид аммония.
Получение оснований.
Химические свойства
Амфотерные гидроксиды
Амфотерные гидроксиды – гидроксиды, проявляющие основные и кислотные свойства. Вступающие в реакцию и с кислотами и с щелочами. Проявление основных свойств выражается в реакциях гидроксидов с кислотами с образованием соли и воды, а проявление кислотных свойств выражается в реакциях с щелочами также с образованием соли и воды.
Амфотерные гидроксиды практически нерастворимы в воде (а это значит, что соответствующие им оксиды с водой не реагируют). Кислотные и основные свойства как правило выражены слабо (нивелируют друг друга). К амфотерным гидроксидам ЭГП относятся гидроксиды бериллия, олова, свинца, алюминия к примеру.
Важное замечание: амфотерные гидроксиды растворимы в растворах щелочей, а это значит, что для получения таких гидроксидов ни в коем случае не берем избыток щелочей. В противном случае у нас в ходе обменной реакции щелочи и соли амфотерный гидроксид попросту растворится.
Мы с вами рассмотрели основные свойства гидроксидов элементов главных подгрупп и общие свойства и получение гидроксидов, а теперь давайте рассмотрим гидроксиды элементов побочных подгрупп.
Титан. Титан в степени окисления +4 в виде гидроксида проявляет амфотерные свойства (есть титановая кислота). Одна из форм титановой кислоты растворяется в щелочи и образует соли титанаты.
Цирконий. Гидроксид четырехвалентного циркония также амфотерен и подобно титану растворяется в щелочи, образуя цирконаты.
Хром. Гидроксид хрома трехвалентный – амфотерный гидроксид имеет соли в катионной форме и в анионной форме. Остальные модификации хрома образуют исключительно анионные формы.
Марганец. Элемент проявляет степени окисления от +2 до + 7 и каждая имеет свои характерные особенности. Так марганец в степени окисления + 2 образует слабое основание, а вот четырехвалентный марганец образует амфотерный гидроксид, образующий соли манганиты. Марганец в других степенях окисления не образует гидроксидов.
Железо. Образует слабое основание – двухвалентный гидроксид железа с признаками амфотерности, но с преобладанием основных свойств. А вот гидроксид железа в трехвалентном состоянии – этотипичное амфотерное соединение с небольшим преобладанием основных свойств.
Медь. Двухвалентный гидроксид меди также проявляет амфотерные свойства и подобно двухвалентному гидроксиду железа основные свойства преобладают над кислотными. Образование купратов возможно только при действии на гидроксид меди концентрированным раствором щелочи.
Цинк. Образует типично амфотерный гидроксид. С растворами кислот образует соль и воду, а с раствором щелочей образует цинкаты.
Надеемся, цель данной статьи послужить вам своеобразной памяткой и шпаргалкой достигнута. Более детальную информацию вы сможете получить уже непосредственно на занятиях с нашими преподавателями и сдать ЕГЭ на 90+. А значит открыть себе путь в любой престижный ВУЗ страны. В следующих статьях мы с вами рассмотрим кислоты и соли, разберем особенности кислородосодержащих кислот, рассмотрим соли различных элементов, познакомимся с частными случаями химических реакций различных солей.
2.5. Характерные химические свойства оснований и амфотерных гидроксидов.
Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?
2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2. Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.
Химические свойства оснований
Все основания подразделяют на:
Напомним, что бериллий и магний к щелочноземельным металлам не относятся.
Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.
Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.
Взаимодействие оснований с кислотами
Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:
Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:
Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH)2 могут образовывать основные соли при недостатке кислоты, например:
Взаимодействие с кислотными оксидами
Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:
Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P2O5, SO3, N2O5, с образованием средних солей:
Нерастворимые основания вида Me(OH)2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:
С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:
Взаимодействие оснований с амфотерными оксидами и гидроксидами
Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:
Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:
В случае алюминия при действии избытка концентрированной щелочи вместо соли Na[Al(OH)4] образуется соль Na3[Al(OH)6]:
Взаимодействие оснований с солями
Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:
1) растворимость исходных соединений;
2) наличие осадка или газа среди продуктов реакции
Термическая устойчивость оснований
Все щелочи, кроме Ca(OH)2, устойчивы к нагреванию и плавятся без разложения.
Все нерастворимые основания, а также малорастворимый Ca(OH)2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000 o C:
Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 o C:
Химические свойства амфотерных гидроксидов
Взаимодействие амфотерных гидроксидов с кислотами
Амфотерные гидроксиды реагируют с кислотами:
Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с такими кислотами, как H2S, H2SO3 и H2СO3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:
Взаимодействие амфотерных гидроксидов с кислотными оксидами
Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO3, P2O5, N2O5):
Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с кислотными оксидами SO2 и СO2.
Взаимодействие амфотерных гидроксидов с основаниями
Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:
А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:
Взаимодействие амфотерных гидроксидов с основными оксидами
Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:
Термическое разложение амфотерных гидроксидов
Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду:
Характерные химические свойства оснований и амфотерных гидроксидов
Содержание:
Первое знакомство с основаниями состоялось при изучении взаимодействия воды с активными металлами и с оксидами активных металлов. В состав оснований входит одновалентная группа атомов OH (гидроксогруппа). Следовательно, основаниям можно дать следующее определение:
Основания – сложные вещества, в состав которых входят атомы металлов, соединенные с одной или нескольким группами атомов OH.
Общая формула оснований выглядит следующим образом: Ме (ОН)x, где Ме – металл; x – индекс.
Номенклатура оснований
Название оснований включает в себя слово «гидроксид», названия металла и его валентности. Более того, для элементов с постоянной валентностью она не указывается.
Название основания = «Гидрооксид» + название Me + валентность (в скобках)
Классификация оснований
Все основания можно классифицировать по различным признакам. Рассмотрим это в нижеприведенной таблице.
Из таблицы мы видим, что наблюдается большое различие по некоторым признакам. В зависимости от этого, различные группы оснований, обладают не схожими химическими свойствами.
Химические свойства щелочей (Щ)
NaOH + HCl → NaCl + H2O
Химические свойства нерастворимых оснований
Химические свойства амфотерных гидроксидов
К амфотерным гидроксидам относятся сложные вещества, способные проявлять свойства кислот либо оснований при определенных условиях.
Формулы данных соединений можно представить в виде оснований и в виде кислот.
Задания 32. Характерные химические свойства неорганических веществ
CE7BF8
С какими из перечисленных ниже веществ будет взаимодействовать раствор сульфата меди (II)?
1) гидроксид калия (раствор)
3) нитрат бария (раствор)
5) оксид углерода (IV)
7) фосфат натрия (раствор)
Ответ: 1237
Пояснение:
Сульфат меди (II) CuSO4 – растворимая в воде соль синего цвета, взаимодействует с растворимыми основаниями, кислотами и солями с образованием осадков или газов. Кроме того, сульфат меди вступает с металлами, стоящими в электрохимическом ряду напряжений металлов до меди, т.е. с теми, которые способны заместить медь в соли. Следовательно, из предложенного списка сульфат меди реагирует
— с гидроксидом калия KOH с образованием синего осадка Cu(OH)2:
— железом, так как оно стоит перед медью в электрохимическом ряду напряжений металлов. В результате реакции выделяется медь, железо окисляется до степени окисления +2:
— фосфатом натрия с образованием не растворимого в воде голубого осадка – фосфата меди (II):
ACE94D
Какие гидроксиды не взаимодействуют со щелочами?
Ответ:134
Пояснение:
Амфотерные гидроксиды – сложные вещества, в зависимости от условий проявляющие либо кислотные, либо основные свойства, т.е. амфотерные гидроксиды реагируют с кислотами и щелочами.
Среди представленных ответов амфотерными гидроксидами являются гидроксид хрома (III) и гидроксид цинка.
ACE94D
Какие гидроксиды не взаимодействуют со щелочами?
Ответ:134
Пояснение:
Амфотерные гидроксиды – сложные вещества, в зависимости от условий проявляющие либо кислотные, либо основные свойства, т.е. амфотерные гидроксиды реагируют с кислотами и щелочами.
Среди представленных ответов амфотерными гидроксидами являются гидроксид хрома (III) и гидроксид цинка.
F33AAC
При обычной температуре магний не взаимодействует с
1) водой в присутствии кислорода
2) растворами щелочей
Ответ: 125
Пояснение:
В присутствии кислорода Mg окисляется до MgO, т.е. металл становится покрытым оксидной пленкой. Оксид магния MgO превращается в гидроксид Mg(OH)2 в горячей воде:
Сульфид магния MgS образуется непосредственно из простых веществ при температуре 800 o C:
Mg + S = MgS (t = 800 o C)
С разбавленными и концентрированными растворами HNO3 и H2SO4 Mg реагирует при комнатной температуре. Поскольку Mg – металл, стоящий в ряду активностей металлов до водорода, в зависимости от концентрации азотной кислоты азот восстанавливается до различных степеней окисления:
Реакция Mg с разбавленным раствором серной кислоты:
Mg является основным металлом, поэтому не реагирует с основаниями, т.е. с NaOH реакция не проходит.
C5C6B5
При комнатной температуре хром взаимодействует с
Ответ: 13
Пояснение:
В электрохимическом ряду напряжений металлов хром находится до водорода, поэтому он вытесняет водород из растворов неокисляющих кислот:
Концентрированные азотная и серная кислоты пассивируют хром. Хром может растворяться в них лишь при сильном нагревании, образуя соли хрома (III) и продукты восстановления кислоты:
В измельченном раскаленном состоянии хром реагирует с водой, образуя оксид хрома (III) и водород:
С азотом хром реагирует при температуре выше 1000 o C с образованием нитридов:
С водородом не взаимодействует
4DF082
Установите соответствие между реагирующими веществами и продуктами их взаимодействия.
РЕАГИРУЮЩИЕ ВЕЩЕСТВА
ПРОДУКТЫ ВЗАИМОДЕЙСТВИЯ
Ответ: А-1, Б-4, В-3, Г-6
Пояснение:
А) MgO + SO2 = MgSO3 – реакция соединения (из двух сложных веществ образуется одно более сложное)
Б) MgO + SO3 = MgSO4 – реакция соединения (из двух сложных веществ образуется одно более сложное)
В) MgO + H2SO3 = MgSO3 + H2O– реакция обмена (два сложных вещества – реагенты – обмениваются своими составными частями)
Г) MgO + H2SO4 = MgSO4 + H2O – реакция обмена (два сложных вещества – реагенты – обмениваются своими составными частями)
B40780
Установите соответствие между названием оксида и формулами веществ, с которыми он может взаимодействовать.
Классификация неорганических веществ
Среди простых веществ выделяют металлы и неметаллы. Среди сложных: оксиды, основания, кислоты и соли. Классификация неорганических веществ построена следующим образом:
Большинство химических свойств мы изучим по мере продвижения по периодической таблице Д.И. Менделеева. В этой статье мне хотелось бы подчеркнуть ряд принципиальных деталей, которые помогут в дальнейшем при изучении химии.
Оксиды
Все оксиды подразделяются на солеобразующие и несолеобразующие. Солеобразующие имеют соответствующие им основания и кислоты (в той же степени окисления (СО)!) и охотно вступают в реакции солеобразования. К ним относятся, например:
Солеобразующие оксиды, в свою очередь, делятся на основные, амфотерные и кислотные.
Основным оксидам соответствуют основания в той же СО. В химических реакциях основные оксиды проявляют основные свойства, образуются исключительно металлами. Примеры: Li2O, Na2O, K2O, Rb2O CaO, FeO, CrO, MnO.
Основные оксиды взаимодействуют с водой с образованием соответствующего основания (реакцию идет, если основание растворимо) и с кислотными оксидами и кислотами с образованием солей. Между собой основные оксиды не взаимодействуют.
Li2O + H2O → LiOH (основный оксид + вода → основание)
Здесь не происходит окисления/восстановления, поэтому сохраняйте исходные степени окисления атомов.
Эти оксиды действительно имеют двойственный характер: они проявляют как кислотные, так и основные свойства. Примеры: BeO, ZnO, Al2O3, Fe2O3, Cr2O3, MnO2, PbO, PbO2, Ga2O3.
С водой они не взаимодействуют, так как продукт реакции, основание, получается нерастворимым. Амфотерные оксиды реагируют как с кислотами и кислотными оксидами, так и с основаниями и основными оксидами.
ZnO + KOH + H2O → K2[Zn(OH)4] (амф. оксид + основание = комплексная соль)
ZnO + N2O5 → Zn(NO3)2 (амф. оксид + кисл. оксид = соль; СО азота сохраняется в ходе реакции)
Fe2O3 + HCl → FeCl3 + H2O (амф. оксид + кислота = соль + вода; обратите внимание на то, что СО Fe = +3 не меняется в ходе реакции)
Проявляют в ходе химических реакций кислотные свойства. Образованы металлами и неметаллами, чаще всего в высокой СО. Примеры: SO2, SO3, P2O5, N2O3, NO2, N2O5, SiO2, MnO3, Mn2O7.
Кислотные оксиды вступают в реакцию с основными и амфотерными, реагируют с основаниями. Реакции между кислотными оксидами не характерны.
SO2 + Na2O → Na2SO3 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +4)
SO3 + Li2O → Li2SO4 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +6)
P2O5 + NaOH → Na3PO4 + H2O (кисл. оксид + основание = соль + вода)
Реакции несолеобразующих оксидов с основаниями, кислотами и солеобразующими оксидов редки и не приводят к образованию солей. Некоторые из несолеобразующих оксидов используют в качестве восстановителей:
FeO + CO → Fe + CO2 (восстановление железа из его оксида)
Основания
Основания классифицируются по количеству гидроксид-ионов в молекуле на одно-, двух- и трехкислотные.
Так же, как и оксиды, основания различаются по свойствам. Все основания хорошо реагируют с кислотами, даже нерастворимые основания способны растворяться в кислотах. Также нерастворимые основания при нагревании легко разлагаются на воду и соответствующий оксид.
Mg(OH)2 → (t) MgO + H2O (при нагревании нерастворимые основания легко разлагаются)
Если в ходе реакции основания с солью выделяется газ, выпадает осадок или образуется слабый электролит (вода), то такая реакция идет. Нерастворимые основания с солями почти не реагируют.
Ba(OH)2 + NH4Cl → BaCl2 + NH3 + H2O (в ходе реакции образуется нестойкое основание NH4OH, которое распадается на NH3 и H2O)
KOH + BaCl2 ↛ реакция не идет, так как в продуктах нет газа/осадка/слабого электролита (воды)
В растворах щелочей pH > 7, поэтому лакмус окрашивает их в синий цвет.
Al(OH)3 + HCl → AlCl3 + H2O (амф. гидроксид + кислота = соль + вода)
Al(OH)3 + KOH → K[Al(OH)4] (амф. гидроксид + основание = комплексная соль)
При нагревании до высоких температур комплексные соли не образуются.
Кислоты
Кислоты отлично реагируют с основными оксидами, основаниями, растворяя даже те, которые выпали в осадок (реакция нейтрализации). Также кислоты способны вступать в реакцию с теми металлами, которые стоят в ряду напряжений до водорода (то есть способны вытеснить его из кислоты).
Zn + HCl → ZnCl2 + H2↑ (реакция идет, так как цинк стоил в ряду активности левее водорода и способен вытеснить его из кислоты)
Cu + HCl ↛ (реакция не идет, так как медь расположена в ряду активности правее водорода, менее активна и не способна вытеснить его из кислоты)
Все кислоты подразделяются на сильные и слабые. Напомню, что мы составили подробную таблицу сильных и слабых кислот (и оснований!) в теме гидролиз. В реакции из сильной кислоты (соляной) можно получить более слабую, например, сероводородную или угольную кислоту.
В завершении подтемы кислот предлагаю вам вспомнить названия основных кислот и их кислотных остатков.
Блиц-опрос по теме Классификация неорганических веществ