что называют радиоактивным излучением
«Отношение людей к той или иной опасности определяется тем, насколько хорошо она им знакома».
Настоящий материал – обобщённый ответ на многочисленные вопросы, возникающие пользователей приборов для обнаружения и измерения радиации в бытовых условиях.
Минимальное использование специфической терминологии ядерной физики при изложении материала поможет вам свободно ориентироваться этой в экологической проблеме, не поддаваясь радиофобии, но и без излишнего благодушия.
Опасность РАДИАЦИИ реальная и мнимая
«Один из первых открытых природных радиоактивных элементов был назван «радием»
— в переводе с латинского-испускающий лучи, излучающий».
Каждого человека в окружающей среде подстерегают различные явления, оказывающие на него влияние. К ним можно отнести жару, холод, магнитные и обычные бури, проливные дожди, обильные снегопады, сильные ветры, звуки, взрывы и др.
Благодаря наличию органов чувств, отведенных ему природой, он может оперативно реагировать на эти явления с помощью, например, навеса от солнца, одежды, жилья, лекарств, экранов, убежищ и т.д.
Ионизирующее излучение
Протоны частицы имеющие положительный заряд, равный по абсолютной величине заряду электронов.
Нейтроны нейтральные, не обладающие зарядом, частицы. Число электронов в атоме в точности равно числу протонов в ядре, поэтому каждый атом в целом нейтрален. Масса протона почти в 2000 раз больше массы электрона.
Источники радиации
Источники радиации бывают естественными, присутствующими в природе, и не зависящими от человека.
Еще один, как правило менее важный, источник поступления радона в помещения представляет собой вода и природный газ, используемый для приготовления пищи и обогрева жилья.
Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона. Однако основная опасность исходит вовсе не от питья воды, даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков, а при кипячении воды или приготовлении горячих блюд радон практически полностью улетучивается. Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или парилке (парной).
ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ТКАНИ ОРГАНИЗМА
Повреждений, вызванных в живом организме ионизирующим излучением, будет тем больше, чем больше энергии оно передаст тканям; количество этой энергии называется дозой, по аналогии с любым веществом поступающим в организм и полностью им усвоенным. Дозу излучения организм может получить независимо от того, находится ли радионуклид вне организма или внутри него.
Количество энергии излучения, поглощенное облучаемыми тканями организма, в пересчете на единицу массы называется поглощенной дозой и измеряется в Греях. Но эта величина не учитывает того, что при одинаковой поглощенной дозе альфа-излучение гораздо опаснее (в двадцать раз) бета или гамма-излучений. Пересчитанную таким образом дозу называют эквивалентной дозой; ее измеряют в единицах называемых Зивертами.
Следует учитывать также, что одни части тела более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения, возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения человека следует учитывать с различными коэффициентами. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения для организма; она также измеряется в Зивертах.
Заряженные частицы.
Проникающие в ткани организма альфа- и бета-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям).
Электрические взаимодействия.
За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.
Физико-химические изменения.
И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно способные, как «свободные радикалы».
Химические изменения.
В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.
Биологические эффекты.
Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток или изменений в них.
ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИОАКТИВНОСТИ
Представляют собой число распадов в единицу времени.
Представляют собой количество энергии ионизирующего излучения, поглощенное единицей массы какого-либо физического тела, например тканями организма.
1 мкЗв = 1/1000000 Зв
1 бер = 0.01 Зв = 10 мЗв Единицы эквивалентной дозы.
Представляют собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую опасность разных видов ионизирующего излучения.
Представляют собой дозу полученную организмом за единицу времени.
Поскольку в кирпиче и бетоне в небольших дозах присутствуют радиоактивные элементы, доза возрастает еще на 1,5 мЗв/год. Наконец, из-за выбросов современных тепловых электростанций, работающих на угле, и при полетах на самолете человек получает до 4 мЗв/год. Итого существующий фон может достигать 10 мЗв/год, но в среднем не превышает 5 мЗв/год (0,5 бэр/год).
Такие дозы совершенно безвредны для человека. Предел дозы в добавление к существующему фону для ограниченной части населения в зонах повышенной радиации установлен 5 мЗв/год (0,5 бэр/год), т.е. с 300-кратным запасом. Для персонала, работающего с источниками ионизирующих излучений, установлена предельно допустимая доза 50 мЗв/ год (5 бэр/год), т.е. 28 мкЗв/ч при 36-часовой рабочей неделе.
ЧЕМ ИЗМЕРЯЮТ РАДИАЦИЮ
Доктор физико-математических наук, Профессор МИФИ Н.М. Гаврилов
статья написана для компании «Кварта-Рад»
Виды радиоактивных излучений и их опасность
Радиоактивное излучение является мощным воздействием на человеческий организм, способным вызвать необратимые процессы, ведущие к трагическим последствиям. В зависимости от мощности различные виды радиоактивных излучений могут вызвать тяжелые заболевания, а могут, наоборот, лечить человека. Некоторые из них используются в диагностических целях. Другими словами, все зависит от контролируемости процесса, т.е. его интенсивности и продолжительности воздействия на биологические ткани.
Сущность явления
В общем случае под понятием радиация подразумевается высвобождение частиц и их распространение в виде волн. Радиоактивность подразумевает самопроизвольный распад ядер атомов некоторых веществ с появлением потока заряженных частиц большой мощности. Вещества, способные на такое явление, получили название радионуклидов.
Так что такое радиоактивное излучение? Обычно под этим термином отмечаются как радиоактивные, так и радиационные излучения. По своей сути, это направленный поток элементарных частиц значительной мощности, вызывающих ионизацию любой среды, попадающей на их пути: воздух, жидкости, металлы, минералы и другие вещества, а также биологические ткани. Ионизация любого материала ведет к изменению его структуры и основных свойств. Биологические ткани, в т.ч. человеческого организма, подвергаются изменениям, которые не совместимы с их жизнедеятельностью.
Различные типы радиоактивного излучения имеют разную проникающую и ионизирующую способность. Поражающие свойства зависят от следующих основных характеристик радионуклеидов: вид радиации, мощность потока, период полураспада. Ионизирующая способность оценивается по удельному показателю: количеству ионов ионизируемого вещества, формируемых на расстоянии в 10 мм по пути проникновения излучения.
Негативное воздействие на человека
Радиационное облучение человека приводит к структурным изменениям в тканях организма. В результате ионизации в них появляются свободные радикалы, которые представляют собой активные в химическом плане молекулы, поражающие и убивающие клетки. Первыми и наиболее сильно страдают желудочно-кишечная, мочеполовая и кроветворная системы. Появляются выраженные симптомы их дисфункции: тошнота и рвота, повышенная температура, нарушение стула.
Достаточно типичной является лучевая катаракта, вызванная воздействием излучения на глазные ткани. Наблюдаются и другие серьезные последствия радиационного облучения: сосудистый склероз, резкое снижение иммунитета, гематогенные проблемы. Особую опасность представляет повреждение генетического механизма. Возникающие активные радикалы способны изменить структуру главного носителя генетической информации – ДНК. Такие нарушения могут приводить к непрогнозируемым мутациям, отражающимся на следующих поколениях.
Степень поражения человеческого организма зависит от того, какие виды радиоактивного излучения имели место, какова интенсивность и индивидуальная восприимчивость организма. Главный показатель – доза облучения, показывающая, какое количество радиации проникло в организм. Установлено, что разовая большая доза значительно опаснее, чем накопление такой дозы при длительном облучении маломощным излучением. Поглощенное организмом количество радиации измеряется в эйвертах (Эв).
Любая жизненная среда имеет определенный уровень радиации. Нормальным считается радиационный фон не выше 0,18-0,2 мЭв/ч или 20 микрорентгенов. Критический уровень, ведущий к летальному исходу, оценивается в 5,5-6,5 Эв.
Разновидности излучения
Как отмечалось, радиоактивное излучение и его виды могут по-разному воздействовать на человеческий организм. Можно выделить следующие основные разновидности радиации.
Излучения корпускулярного типа, представляющие собой потоки частиц:
Волновое излучение, представляющее собой лучевое распространение энергии:
Как может облучиться человек
Человек получает радиоактивное облучение при условии проникновения радиации в его организм. Оно может происходить 2 способами: внешнее и внутреннее воздействие. В первом случае источник радиоактивного излучения находится снаружи, а человек по разным причинам попадает в поле его деятельности без надлежащей защиты. Внутреннее воздействие осуществляется при проникновении радионуклида внутрь организма. Это может произойти при употреблении облученных продуктов или жидкостей, с пылью и газами, при дыхании зараженным воздухом и т.д.
Внешние источники радиации можно подразделить на 3 категории:
К наиболее опасным объектам в части возможного радиационного облучения можно отнести следующие источники радиации:
Проявление поражения организма
Характеристика радиоактивных излучений играет решающую роль в степени поражения человеческого организма. В результате воздействия развивается лучевая болезнь, которая может иметь 2 направления: соматическое и генетическое поражение. По времени проявления выделяется ранний и отдаленный эффект.
Ранний эффект выявляет характерные симптомы в период от 1 часа до 2 месяцев. Типичными считаются такие признаки: кожная краснота и шелушение, мутность глазного хрусталика, нарушение кроветворного процесса. Крайний вариант при большой дозе облучения – летальный исход. Локальное поражение характеризуются такими признаками, как лучевой ожог кожного покрова и слизистой оболочки.
Отдаленные проявления выявляются через 3-5 месяцев, а то и через несколько лет. В этом случае отмечаются устойчивые кожные поражения, злокачественные опухоли различной локализации, резкое ухудшение иммунитета, изменение состава крови (значительное снижение уровня эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов). В результате этого часто развиваются различные инфекционные болезни, существенно снижается продолжительность жизни.
Для предотвращения облучения человека ионизирующим излучением применяются различные виды защиты, которые зависят от типа радиации. Кроме того, регламентируются жесткие нормы по максимальной продолжительности пребывания человека в зоне облучения, минимальному расстоянию до источника радиации, использованию индивидуальных средств защиты и установке защитных экранов.
Радиоактивное излучение способно оказывать сильное разрушительное воздействие на все ткани человеческого организма. В то же время оно используется и при лечении различных болезней. Все зависит от дозы облучения, получаемой человеком в разовом или длительном режиме. Только неукоснительное соблюдение норм радиационной защиты поможет сохранить здоровье, даже если находиться в пределах действия радиационного источника.
В чем заключается явление радиоактивности и кто его открыл
Радиоактивность — что это за явление
Радиоактивность — это явление, при котором ядра одного химического элемента самопроизвольно превращаются в ядра другого элемента или изотопы того же элемента. Процесс сопровождается испусканием частиц и электромагнитного излучения. При этом происходит изменение состава ядра атома: его заряда и массового числа.
Понятие «радиоактивность» было введено Марией Склодовской-Кюри. Оно тождественно понятию радиоактивный распад.
В определении присутствует термин изотоп. Прежде чем рассмотреть его, вспомним определение нуклида.
Нуклид — это отдельный вид атома химического элемента с определенными значениями массового и протонного чисел.
Для обозначения определенного нуклида используют запись вида
где X — символ химического элемента, A — массовое (нуклонное) число, Z — зарядовое (протонное) число.
Количество нейтронов в ядре N = A − Z
Изотоп — это разновидность атома определенного элемента с таким же атомным номером, но другим массовым числом.
Это значит, что в изотопах одинаковое число протонов, но разное число нейтронов.
Всего известно более двух тысяч радиоактивных изотопов. Для сравнения, стабильных открыто около 280.
Ученые разделяют нуклиды на стабильные и нестабильные. Нестабильные, также известные как радионуклиды, со временем распадаются. Стабильные же способны существовать в неизменном виде неопределенно долгий промежуток времени.
Суть явления радиоактивности заключается в том, что при распаде ядра нестабильного атома из него с большой скоростью вылетает целое число частиц с высокой энергией. Вещества, которые содержат радиоактивные ядра, называют радиоактивными.
Радиация (радиоактивное излучение) — это поток частиц высокой энергии, вылетающих из нестабильного ядра.
В современной химии выделяют естественную и искусственную радиоактивность.
Естественная радиоактивность — это явление самопроизвольного распада атомных ядер в природе.
Примером естественной радиоактивности служит солнечная радиация. В ядре солнца постоянно происходят термоядерные реакции, в ходе которых водород превращается в гелий.
Искусственная радиоактивность — это явление самопроизвольного распада атомных ядер, полученных искусственным путем через соответствующие ядерные реакции.
Техногенная радиоактивность применяется людьми. Например, на атомных электростанциях электрическую энергию получают за счет искусственно созданных ядерных реакций.
В результате экспериментов было установлено, что в периодической системе Менделеева радиоактивны все элементы, начиная с висмута. Их порядковый номер больше 82.
Единицы измерения
В химии существует несколько единиц измерения радиоактивности:
В Международной системе единиц ( С И ) единицей измерения активности радионуклида является беккерель. На русском языке он обозначается как Бк, в международном формате — Bq.
Эту единицу назвали в честь Антуана Беккереля, одного из первооткрывателей радиоактивности. Один Беккерель равен одному распаду в секунду.
В Международной СИ секунде в минус первой степени равен не только беккерель, но и герц. Важно не путать их: беккерель используют для измерения случайных процессов распада, а герц — для периодических процессов. Их природа различна.
Один Беккерель — это маленькая единица измерения, так что на практике принято использовать кратные единицы.
Внесистемная, но широко распространенная единица — кюри. Ее используют для измерения активности радионуклидов. На русском обозначается как Ки, в международных исследованиях — Ci. Названа она в честь Пьера Кюри и Марии Склодовской-Кюри.
Точно установлена связь между значениями Ки и Бк:
Перевести значения из Бк в Ки сложнее, т.к. соотношение приблизительно:
Еще одна единица измерения, которой в современности пользуются редко — резерфорд. Его обозначают как Рд или Rd в русском и международном стандартах соответственно. Единица тоже названа в честь ученого — Эрнеста Резерфорда, также изучавшего природу радиоактивности.
Один резерфорд равен 10^6 распадам в 1 секунду. Точно равенство:
1 Р д = 1 ⋅ 10 6 Б к = 1 М Б к
Дозиметрия — это определение дозы радиоактивного излучения, поглощаемого объектом.
В дозиметрии используют свои единицы облучения:
Поглощенную дозу в Международной СИ измеряют в единицах грэй (Гр). Один грэй равен энергии излучения в 1 Дж, поглощенной 1 кг вещества.
Эквивалентную дозу, т.е. произведение поглощенной дозы на коэффициент качества излучения, в Си измеряют в зивертах. Один зиверт эквивалентен излучению, создающему такой же биологический эффект, как и поглощенная доза в 1 Гр гамма-излучения или рентгеновского излучения.
Внесистемная единица измерения эквивалентной дозы — бэр. Бэр расшифровывается как «биологический эквивалент рентгена».
За один бэр принято считать такое количество энергии излучения, поглощенного 1 кг вещества, при котором биологическое воздействие соответствует поглощенной дозе в 1 рад гамма-излучения или рентгеновского излучения. То есть:
Для измерения воздействия радиации используют также понятие мощность дозы. Это доза, полученная объектом за выбранную единицу времени.
Кто открыл, как это произошло
Предпосылкой открытия радиоактивности послужило открытие Вильгельма Конрада Рентгена. В конце XIX века ученый обнаружил новый вид лучей, который назвал X-лучами. В России они более известны как «рентгеновские лучи».
Лучи Рентгена представляют собой электромагнитное излучение длиной волн от
Хотя рентгеновское излучение менее вредно, чем радиоактивное, оно все равно является ионизирующим и в больших объемах способно навредить живым организмам.
Вскоре после Рентгена новый вид лучей открыл французский физик Антуан Анри Беккерель. В 1896 году Беккерель посетил заседание Академии наук, на котором узнал о предполагаемой связи рентгеновского излучения и флуоресценции. Чтобы проверить эту гипотезу, Беккерель провел эксперимент с фотопластинкой и солями урана. Он обнаружил, что лучи проходят через препятствия, оставляя изображение на фотопластинке.
Сперва Беккерель предположил, что открыл новый, более простой способ делать рентгеновские снимки. Но после многочисленных экспериментов он не мог дать объяснения, откуда уран получает свою энергию. К тому же, вопреки его данным, уран фосфоресцировал даже без солнечного света, что никак не согласовывалось с его гипотезой.
Так Беккерель понял, что открыл новый вид лучей. Но из-за неспособности разрешить найденное противоречие ученый временно отказался от изучения, как известно теперь, радиоактивности.
В 1898 году Мария и Пьер Кюри обнаружили, что новые лучи свойственны не только урану, но и торию. Позднее пара ученых открыла радиоактивность полония и радия. От названия последнего и было дано название явлению — радиоактивность.
К тому же, Беккерель и Кюри совместно обнаружили биологическое действие радиоактивности. На одной из лекций Беккерель держал в пробирке в жилетном кармане радиоактивное вещество. На следующий день на теле под карманом он обнаружил покраснение в форме пробирки. Пьер Кюри после этого 10 часов носил на себе пробирку с радием, и спустя несколько дней у него тоже появилось покраснение. Это покраснение впоследствии перешло в тяжелую язву, с которой Пьер боролся еще два месяца.
Пагубное влияние радиоактивных веществ не остановило ученых. В 1934 году Мария Склодовская-Кюри умерла от осложнений, вызванных долгой работой с радием.
В дальнейшем значительную роль в исследовании радиоактивности сыграл Эрнест Резерфорд. Ученый установил природу радиоактивных превращений и излучения, обнаружил сложный состав излучения.
Разновидности излучения, свойства и характеристики
Ученые выделили 3 вида излучения:
На основе излучения выделяют 3 основных типа радиоактивного распада:
Известны также распады с испусканием протонов (одного или двух), нейтрона и кластерная радиоактивность.
Процесс радиоактивного распада может быть продолжительным. Если дочернее ядро, полученное в результат радиоактивного распада, также является радиоактивным, то со временем и оно распадается. Так продолжается, пока не образуется стабильное нерадиоактивное ядро.
При этом некоторые изотопы могут одновременно испытывать более одного вида распада.
Альфа-распад
Альфа-распад — вид самопроизвольного распада атомного ядра на дочернее ядро, при котором происходит испускание альфа-частицы — ядра атома атома гелия. При этом массовое число дочернего ядра меньше на 4, а атомный номер — на 2.
Альфа-распад, т.е. поток положительно заряженных частиц, характерен для изотопов всех тяжелых элементов, начиная с висмута.
Альфа-частицы покидают ядро со скоростью от 9400 до 23700 км/с. При этом в воздухе при нормальных условиях альфа-излучение способно преодолеть лишь расстояние от 2,5 до 7,5 см.
Эффективно задержать радиоактивное излучение альфа-частиц можно несколькими десятками микрометров плотного вещества. К примеру, листом бумаги или даже ороговевшим слоем кожи — человеческим эпидермисом. Это делает его относительно безопасным для человека.
Однако если источник альфа-излучения все же попадет в организм (например, в виде пыли), это может привести к серьезным последствиям. Альфа-частицы наносят примерно в 20 раз больше повреждений, чем бета- и гамма-частицы той же энергии.
Правило смещения Содди, также закон радиоактивных смещений — это правило, описывающее превращение элементов в процессе радиоактивного распада.
Пример
Как уже было описано ранее, процесс радиоактивного распада продолжается до тех пор, пока не образуется стабильное ядро. Рассмотрим такую цепочку на основе альфа-распада урана-238:
Бета-распад
Бета-распад — вид самопроизвольного распада атомного ядра на дочернее ядро, при котором происходит испускание потока электронов и антинейтрино. Массовое число при этом остается тем же, поскольку число нуклонов в ядре остается неизменным.
Бета-излучение как отрицательное излучение малой массы обладает большей проникающей способностью, нежели альфа-частицы. Задержать его можно алюминиевой фольгой.
Среди всех видов радиоактивного распада бета-распад является наиболее распространенным. Он особенно характерен для искусственных радионуклидов.
Выделяют несколько подвидов бета-распада:
Бета-минус распад представляет собой испускание из ядра электрона, образовавшегося в результате самопроизвольного превращения одного из нейтронов в протон и электрон. Такой электрон называют бета-минус частицей.
Рассмотрим бета-минус распад трития в гелий-3:
Бета-плюс распад, или позитронный распад сопровождается испусканием из ядра позитрона (античастицы электрона), образовавшегося в результате самопроизвольного превращения одного из протонов в нейтрон и позитрон. Получившуюся частицу называют бета-плюс частицей.
Рассмотрим бета-плюс распад углерода:
C 6 11 → B 5 11 + e + + ν e
Позитронный распад всегда сопровождается электронным захватом. Ядро захватывает электрон из атомной оболочки и испускает нейтрино. Заряд ядра также уменьшается на единицу.
Правило смещения Содди для электронного захвата:
Рассмотрим электронный захват на примере захвата бериллия в литий:
Гамма-распад
Гамма-распад чаще называют изомерным переходом. Такое название обосновано существованием изомерных состояний ядер. Большинство ядер способны существовать в возбужденном состоянии очень малое количество времени — менее наносекунды. Некоторые ядра способны существовать дольше — микросекунды, сутки или даже года. Такие долгоживущие состояния и называют изомерными.
При гамма-распаде изомерные состояния ядер переходят в основное состояние с излучением одного или нескольких гамма-квантов.
Гамма-излучение обладает намного большей проникающей способностью, чем альфа- и бета-излучение. Оно не имеет электрического заряда, обладает огромной энергией и может быть остановлено только толстым слоем железобетона, стали, свинца или другого серьезного препятствия.
Период полураспада, модели атомов и ядра, кратко
Рассмотрим общепринятую модель строения атома. В центре находится заряженное ядро, внутри которого — нейтральные нейтроны и положительно заряженные протоны. Почти вся масса атома приходится на тяжелое ядро. Вокруг положительно заряженного ядра движутся легкие отрицательно заряженные электроны. В невозбужденном состоянии и вне реакции количество протонов и электронов, как правило, равно, так что атом электронейтрален.
Наглядная схема представлена ниже.
Одной из главных характеристик радиоактивных атомов является его время жизни. Число ежесекундно происходящих распадов пропорционально количеству имеющихся атомов.
На основе периода полураспада некоторых радиоизотопов основан исторический метод радиоизотопного датирования. Для определения возраста некоторых объектов определяют, какая доля радиоактивного изотопа в составе успела распасться. Используют:
Любой радиоактивный распад происходит по закону радиоактивного распада. Математически данный закон выражается в следующем виде:
где N — число нераспавшихся атомов в любой момент времени, N_0 — число радиоактивных атомов в начальный момент времени, T — период полураспада, t — период времени.