что называют колебательным контуром
Колебательный контур
Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).
Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания
Резонансная частота контура определяется так называемой формулой Томсона:
Сайт: | Профильное обучение |
Курс: | Физика. 11 класс |
Книга: | § 7. Колебательный контур. Свободные электромагнитные колебания в контуре. Формула Томсона. Превращения энергии в колебательном контуре |
Напечатано:: | Гость |
Дата: | Суббота, 11 Декабрь 2021, 17:22 |
Оглавление
| Колебательные процессы возможны не только в механических системах. При определенных условиях и в электрических цепях возникают колебания силы тока и напряжения и других электромагнитных величин. Какие это условия? Как вычислить период электромагнитных колебаний? Какие аналогии существуют между колебаниями различной природы? |
Рассмотрим процесс разрядки конденсатора в колебательном контуре. После соединения заряженного конденсатора с катушкой (при помощи ключа К) (рис. 52, в) он начнет разряжаться, так как под действием электрического поля, создаваемого зарядами на обкладках конденсатора, свободные электроны будут перемещаться по цепи от отрицательно заряженной обкладки к положительно заряженной. На рис. 52, в стрелкой показано начальное направление тока в электрической цепи.
Таким образом, в контуре появится нарастающий по модулю электрический ток, сила I(t) которого будет изменяться с течением времени (рис. 53, а). Но мгновенная разрядка конденсатора невозможна, вследствие явления самоиндукции. Действительно, в катушке индуктивности возникнет изменяющийся во времени магнитный поток, который вызовет появление ЭДС самоиндукции. Согласно правилу Ленца ЭДС самоиндукции стремится противодействовать вызвавшей ее причине, т. е. увеличению по модулю силы тока. Вследствие этого, модуль силы тока в колебательном контуре будет в течение некоторого промежутка времени плавно возрастать от нуля до максимального значения I0, определяемого индуктивностью катушки и электроемкостью конденсатора (рис. 53, б).
При разрядке конденсатора энергия его электрического поля превращается в энергию магнитного поля катушки с током. Согласно закону сохранения энергии суммарная энергия идеального колебательного контура остается постоянной с течением времени. Следовательно, уменьшение энергии электрического поля конденсатора равно увеличению энергии магнитного поля катушки:
где q(t) — мгновенное значение заряда конденсатора и I(t) — сила тока в катушке в некоторый момент времени t после начала разрядки конденсатора.
В момент полной разрядки конденсатора (q = 0) сила тока в катушке I(t) достигнет своего максимального по модулю значения I0 (см. рис. 53, б). В соответствии с законом сохранения энергии запасенная в конденсаторе энергия электрического поля перейдет в энергию магнитного поля, запасенную в этот момент в катушке:
После разрядки конденсатора сила тока в катушке начинает убывать по модулю. Это также происходит не мгновенно, поскольку вновь возникающая ЭДС самоиндукции согласно правилу Ленца создает индукционный ток. Он имеет такое же направление, как и уменьшающийся по модулю ток в цепи, и поэтому «поддерживает» его.
В результате, к моменту исчезновения тока заряд конденсатора достигнет максимального значения q0. При этом его обкладка, первоначально заряженная положительно, будет заряжена отрицательно. Далее процесс повторится, отличаясь лишь тем, что электрический ток в контуре будет проходить в противоположном направлении (см. рис. 53, а).
Таким образом, в идеальном LC-контуре будут происходить периодические изменения значений силы тока и напряжения, причем полная энергия контура будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания.
Свободные электромагнитные колебания в LC-контуре — это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без пополнения энергии от внешних источников и без потерь энергии на тепловыделение и излучение.
Таким образом, существование свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора, вызванной возникновением ЭДС самоиндукции в катушке. Заметим, что заряд q(t) конденсатора и сила тока I(t) в катушке достигают своих максимальных значений q0 и I0 в различные моменты времени (см. рис. 53, а, б) (со сдвигом на ).
Наименьший промежуток времени, в течение которого LC-контур возвращается в исходное состояние (к начальным значениям заряда на каждой из обкладок), называется периодом свободных (собственных) электромагнитных колебаний в контуре.
Получим формулу для периода свободных электромагнитных колебаний в контуре, используя закон сохранения энергии по аналогии с механическими колебаниями. Поскольку полная энергия идеального LC-контура, равная сумме энергий электрического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство:
Процессы, происходящие в колебательном контуре, аналогичны колебаниям пружинного маятника. Для полной механической энергии пружинного маятника в любой момент времени:
которая называется формулой Томсона.
Исходя из сказанного, сведем рассмотренные аналогии между физическими величинами при электромагнитных и механических колебаниях в таблицу 6.
Для наблюдения и исследования электромагнитных колебаний применяют электронный осциллограф, на экране которого наблюдают осциллограмму колебаний U(t) (рис. 54).
Таблица 6. Сопоставление физических величин, характеризующих механические и электромагнитные колебания
Электромагнитные колебания
в идеальном колебательном контуре
Что называется колебательным контуром
Обновлено: 15 Июня 2021
Типичным примером свободных колебаний являются пружинные механизмы или математический маятник. Однако в результате многочисленных опытов удалось настроить подобные системы не только в механических установках, но и в электрических цепях. К таким цепям относится колебательный контур.
Что такое колебательный контур, из каких элементов состоит
Колебательный контур является простейшей системой, для которой характерно образование свободных электромагнитны колебаний.
Колебательный контур представляет собой электрическую сеть. В состав замкнутого контура входят следующие компоненты:
В цепи образуются свободные затухающие колебания электромагнитного характера. В зависимости от силы сопротивления резистора определяется скорость затухания колебаний.
Идеальным колебательным контуром называют колебательный контур с полным отсутствием электрического сопротивления. Для такой системы характерны незатухающие свободные электромагнитные колебания.
Области применения резонансных контуров достаточно широки. Они необходимы для изготовления полосовых и режекторных фильтров в усилителях, радиоприемниках и устройствах автоматики.
Колебательные контуры являются компонентами блоков измерения частоты, которые устанавливаются на самолетах марки Ил-62М, Ил-76 и Ту-154М. С их помощью контролируется постоянная частота напряжения на генераторе при изменениях количества оборотов двигателя.
Виды колебательных контуров
Последовательным колебательным контуром называют цепь, в состав которой входит катушка индуктивности и конденсатор, соединенные последовательно. Идеальный последовательный колебательный контур характеризуется несколькими величинами:
На рисунке изображен идеальный последовательный контур.
В отличие от вышеуказанного идеального колебательного контура реальный последовательный контур обладает сопротивлением потерь катушки и конденсатора. Сумма величин этих сопротивлений обозначается буквой R.
Характеристиками параллельного идеального колебательного контура, как и в первом случае, являются индуктивность и емкость. На рисунке представлена схема такой цепи.
В реальном колебательном контуре катушка за счет наличия проводниковой намотки обладает неким сопротивлением потерь, как и конденсатор. Емкостные потери небольшие, что позволяет не учитывать их во многих расчетах.
Закон сохранения энергии в колебательном контуре, формула
\(W = WC(t) + WL(t) = const\)
В этом случае наблюдается нулевое значение энергии магнитного поля в катушке индуктивности, то есть ток равен нулю.
Для того чтобы весь объем электрической энергии трансформировался в энергию магнитного поля, необходимо иметь в контуре ток \(I\) максимального значения. Данное отношение описывается формулой:
Тогда энергия электрического поля и заряд на конденсаторе будут равны нулю.
При таких условиях можно вывести следующее соотношение:
Период колебаний, от чего зависит
Определить периодичность свободных колебаний в условиях колебательного контура можно с помощью формулы Томпсона. Уравнение выглядит следующим образом:
Явление резонанса тока в колебательном контуре
Электромагнитные колебания в колебательном контуре характеризует определенная частота. Данная величина называется резонансом.
Частота колебаний зависит от нескольких параметров колебательного контура:
Формула для расчета частоты колебаний выглядит следующим образом:
Преобразование разных типов энергии с помощью колебательного контура нашло применение в разных областях электротехники и механики. Подобные дисциплины изучают студенты высших и профессиональных учебных заведений, чтобы потом применять их для реализации разнообразных инженерных проектов. Оперативную и компетентную помощь в процессе обучения можно получить на портале Феникс.Хелп.
Колебательный контур: принцип работы, виды контуров, параметры и характеристики
Частота собственных колебаний контура (ее еще называют резонансной частотой fp ) зависит от индуктивности катушки и емкости конденсатора и вычисляется по формуле Томсона из которой видно, что чем меньше значения емкости и индуктивности, тем выше собственная частота контура:
Можно определить индуктивность или емкость контура по известной частоте fp:
L=253•10 2 /f 2 p•C; C=253•10 2 /f 2 p•L.
Последовательный колебательный контур
Так как в катушке и конденсаторе напряжения сдвинуты относительно тока на разные фазовые углы, то более наглядно их можно показать на векторных диаграммах ( рис.4 )
Как видно из диаграммы рис.4а при UL > Uc напряжение внешнего источника опережает ток в колебательном контуре на угол φ и находится выше оси абcцисс в зоне напряжений индуктивности. Значит в данном случае контур имеет сопротивление индуктивного характера.
При UL ( рис.4b ) вектор источника уже будет отставать от вектора тока на угол φ и контур будет иметь емкостное сопротивление.
Полное сопротивление контура Z будет равно:
Амплитудное значение тока Im определяется по формуле:
При выполнении равенства:
На рис.5 показан график характеристик зависимости тока Iк и полного сопротивления Z последовательного контура от частоты.
При резонансе амплитуда тока в контуре равна:
При резонансе отношение между напряжением на индуктивном сопротивлении и напряжением источника будет равно добротности Q катушки:
А добротность контуров, применяемых в радиотехнике, большая. Поэтому напряжение на катушке может превышать в сотни раз напряжение источника.
Но так как при резонансе напряжение на катушке равно напряжению на конденсаторе, значит отношение напряжения на конденсаторе к напряжению источника тоже будет равно добротности:
Для примера на рис.8 показана схема последовательного контура с реальными значениями элементов схемы и параметров, а так же полученные величины напряжений на этих элементах. Отсюда видно, что напряжение на катушке и конденсатотре при резонансе будет больше напряжения источника в Q раз.
Резонанс в последовательном колебательном контуром называют резонансом напряжения, т.к. напряжение на реактивных элементах при резонансе становится больше напряжения внешнего источника.
Полосой пропускания контура называют полосу частот, в пределах которой ток в контуре уменьшается не более, чем в заданное число раз по сравнению с током при резонансе ( рис.10 ):
Параллельный колебательный контур
В параллельном колебательном контуре источник сигнала соединен с катушкой индуктивности и конденсатором параллельно (рис.11).
При подаче переменного напряжения на контур происходит обмен энергиями между конденсатором и катушкой, но только в цепи внутри контура.
Для возникновения резонанса в нем, как и в последовательном контуре, необходимыми условиями являются равенство емкостного Хс и индуктивного ХL сопротивлений, а так же равенство частоты собственных колебаний контура и частоты колебаний источника тока.
Только резонанс в параллельном колебательном контуром, в отличии от резонанса в последовательном контуре, называют резонансом тока.
На рис.15 показан график характеристик зависимости тока Iк и полного сопротивления Z параллельного контура от частоты.
но он потребляет малый ток от источника, который необходим лишь для компенсации потерь в контуре:
Добротность Q параллельного контура, в отличии от последовательного контура, показывает во сколько раз ток в элементах контура больше потребления тока источника:
На рис.16 дан конкретный пример параллельного колебательного контура, где видно, что ток контура больше тока источника в Q раз.
В радиоприемниках так же применяется непосредственная связь колебательного контура с антенной, т.е. контур включен параллельно источнику сигнала ( рис.17 ).
Переменным конденсатором настраиваем контур на частоту сигнала нужной радиостанции. При резонансе контурный ток, вызванный нужной радиостанцией, становится относительно большим, а сопротивление контура тоже большим.Поэтому между точками а и b получается значительное напряжение.
Для других станций контур представляет малое сопротивление и сигнал радиостанции уходит в «землю».
- что называют колебательной системой
- что называют количеством теплоты