что называется теоретической высотой всасывания

Пособие для ремонтника

что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания
Мы уже говорили, что в некоторых случаях для работы конденсаторов водяного охлаждения средней и даже большой производительности может использоваться проточная вода, отбираемая из скважины (колодца), реки или моря.
Холодильные агрегаты при этом размещаются в машинных залах, которые, как правило, расположены выше уровня воды. Для того, чтобы воду подать в конденсатор, ее необходимо забрать с уровня, лежащего ниже входа в насос (см. рис. 78.1).
Это довольно сложная задача, для решения которой нужно ответить на ряд вопросов:
► Где лучше расположить насос?
► С какой глубины насос сможет поднимать воду?
► С какими проблемами при этом можно столкнуться?

Напомним, что такое всасывание жидкости
Для того, чтобы понять, что такое всасывание, давайте сядем за столик кафе и закажем фруктовый сок, который начнем смаковать с помощью соломинки. Мы всасываем сок через соломинку, он поднимается из бокала и попадает к нам в рот. Но почему это происходит, вы можете объяснить?
Движущей силой, которая помогает соку подняться по соломинке, является атмосферное давление.
Атмосферное давление Ра давит на поверхность сока в стакане. Всасывая его через соломинку, мы создаем внутри нее разряжение Р1, которое помогает соку подниматься.
Таким образом, явление объясняется просто созданием разности давлений: АР = Ра — Р1.
Без атмосферного давления втягивать сок через соломинку было бы невозможно.
Правда, есть и еще один путь. Стакан нужно герметично закупорить и подать в него под давлением какой-либо газ.
Такой способ используют при розливе пива.

В колодце на воду действует атмосферное давление. Когда насос создает разряжение в погруженной в воду трубе, это давление заставляет воду подниматься вверх. Отсюда следует, что даже если на входе в насос создать давление, равное абсолютному нулю (что невозможно), вода не поднимется выше, чем на 10,33 м.

Даже если бы насос мог создать абсолютный вакуум, высота подъема воды выше 10,33 м невозможна!

Почему насос не может всасывать воду с уровня ниже 6. 7 м?
7°) Влияние атмосферного давления.
что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания
Мы уже говорили о том, что атмосферное давление зависит от высоты местности. Именно оно является движущей силой, обеспечивающей подъем воды в трубе.
На высоте 2000 метров атмосферное давление не больше, чем 0,77 бар.
Таким образом, насос, установленный на поверхности колодца, находящегося на этой высоте, не сможет поднять воду с уровня более 7,7 м.
Следовательно, при подборе насоса необходимо учитывать высоту местности (см. рис. 78.8).
2°) Влияние потерь давления.
Прежде всего, попробуем объяснить, что такое сетка с обратным клапаном* и в чем заключается ее назначение. Допустим, что насос работает и обеспечивает заданный расход жидкости.
В какой-то момент насос выключили. Что при этом произойдет?

Насос больше не создает разрежения и вода, которая находится во всасывающей трубе, начнет сливаться обратно в колодец.
В результате труба опустошится. При последующем запуске, перед тем, как вода поднимется к крыльчатке, насос должен вначале создать разрежение воздуха, попавшего в трубу после того, как из нее слилась вода.
Однако большинство насосов не способно самозаполняться таким образом
Вместе с тем, длительная работа или слишком частое включение-выключение насоса, работающего, «вхолостую» грозит серьезными поломками.
Следовательно, после остановки насоса необходимо обеспечить такие условия, при которых и во всасывающей трубе, и в корпусе насоса оставалась бы жидкость. При последующем запуске это позволит насосу быстро выйти на режим.
Может быть, для решения данной проблемы нужно просто попытаться залить воду в насос через специально предусмотренное с этой целью отверстие в его корпусе?

что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания
По большому счету, без дополнительных устройств такая операция ни к чему не приведет, поскольку вся вода, которую мы будем заливать в насос, стечет обратно в колодец!
Чтобы вода осталась в трубе, нужно на конце трубы, в той ее части, которая опущена в воду, установить обратный клапан (см. рис. 78.10). Тогда после каждой остановки вода оставалась бы в трубе (и в насосе) и не было бы необходимости заливать ее в насос.
Чтобы сохранить герметичность клапана и защитить клапан от попадания в него песка или грязи, перед клапаном устанавливают металлическую сетку, выполняющую роль фильтра. Это устройство, состоящее из фильтра и обратного клапана, называют кольцом опускной трубы или сеткой с обратным клапаном.
Заметим, что потери давления на кольце могут быть довольно существенными, особенно если фильтр загрязнен. Напомним также, что в этом случае появляется опасность работы насоса в режиме кавитации (см. раздел 77).
Таким образом, всасывающая труба в сборе со всеми ее поворотами, кольцом, вентилями и клапанами при работе насоса характеризуется существенными потерями давления. Величина этих потерь, в зависимости от длины трубы, ее конфигурации и комплектации может меняться в диапазоне от 0,05 до 0,2 бар (то есть от 0,5 до 2 м вод. ст.).
Если потери давления составляют 2 м вод. ст., то на столько же уменьшается и высота всасывания: потери давления напрямую влияют на величину высоты всасывания, поэтому всегда стремятся максимально снизить потери давления.

Влияние вида перекачиваемой жидкости.
Мы знаем, что давление в I бар соответствует примерно 10 м вод. ст., поэтому невозможно всасывать воду с поверхности, которая находится ниже 10 м от входа в насос. Но 1 бар также соответствует и 76 см рт. ст.: следовательно ртуть нельзя всасывать с уровня ниже 76 см от входа в насос
Таким образом, при подборе насоса вы должны принимать во внимание плотность перекачиваемой жидкости (особенно будьте внимательны при подборе насоса для перекачивания водных растворов гликолей, плотность которых зависит от концентрации гликоля).
4°) Влияние температуры перекачиваемой жидкости.
В разделе 77 мы узнали, что чем выше температура перекачиваемой жидкости, тем больше опасность перехода насоса в режим кавитации.
Высота всасывания Н может быть тем больше, чем ниже температура жидкости, которую мы будем перекачивать. Так, например, вода при температуре 10°С может быть поднята к насосу с более низкого уровня, чем вода при температуре 80°С.
В любом случае следует помнить, что изменения температуры и давления являются опасными факторами, определяющими условия вскипания воды.

Почему это происходит, можно понять, вновь обратившись к рассмотрению потока воды между сечением входа в насос <точка 1) и сечением, в котором давление жидкости минимально (точка 4. см. раздел 77).
Падение давления на участке между точкой 1 и точкой 4 эквивалентно потерям давления в насосе. Как и любые потери давления, они растут с увеличением расхода. Однако конструкторы насосов при проектировании могут управлять этими потерями.
Чтобы предотвратить опасность возникновения кавитации в насосах, конструкторы в документации на свою продукцию указывают минимально допустимое давление на входе в насос (в точке 1), ниже которого
пользователь никогда не должен опускаться: это потребная величина параметра NPSH, которая определяется как «абсолютное статическое давление на всасывании». Укажем, что эта величина (часто выражаемая в метрах водяного столба) соответствует внутренним потерям давления на крыльчатке насоса между точками 1 и 4.**
Чтобы лучше усвоить абстрактные понятия, о которых мы только что рассказали (влияние NPSH, температуры, вида жидкости, потерь давления, атмосферного давления), попробуем вместе решить одно небольшое упражнение:
Для охлаждения конденсатора предлагается использовать грунтовые воды, расположенные на глубине 4 метра. Потребная величина кавитационного запаса для выбранного нами насоса (NPSH) равна 3 м вод. ст., вода имеет температуру 10°С, потери давления на фильтре и обратном клапане 0,5 м вод. ст., потери давления во всасывающей трубе так же 0,5 м вод. ст. Высота над уровнем моря 1000 м.

► Можно ли использовать выбранный нами насос?
► Что произойдет, если фильтр засорится?
► Что произойдет, если уровень грунтовых вод понизится на 1 м?

Поправка на высоту: насос будет откачивать воду
из колодца, находящегося на высоте 1000 м над уровнем моря. На этой высоте атмосферное давление ниже, чем на уровне моря на 1,2 м вод. ст.: следовательно, воображаемый насос нужно опустить еще на 1,2 м вниз в точку D. В результате имеем DE = 6,3 — 1,2 = 5,1 м.
Гарантийный запас: чтобы гарантированно не допустить кавитации, заложим в качестве запаса надежности высоту в 1 м. Для этого наш насос опустим еще на 1 м вниз в точку Е. Получим EF = 4,1 м.
Таким образом, выбранный нами насос сможет без каких бы то ни было проблем всасывать воду из колодца, уровень воды в котором на 4,1 м низке входа в насос. То есть, он безусловно может быть использован для подачи воды в конденсатор, поскольку на самом деле уровень воды в колодце только на 4 м ниже уровня входа в насос.
б) Что произойдет, если металлическая сетка фильтра забьется грязью (засорится)?
Очевидно, что со временем металлическая сетка фильтра будет засоряться. Если потери давления на сетке вырастут, например, до 1 м вод. ст., это будет соответствовать ранее установленному гарантийному запасу. Насос обеспечит откачку, но его расход упадет (см. раздел 75).
Если фильтр закупорится еще больше и потери давления станут больше, чем 1 м вод. ст., насос может войти в режим кавитации. В этом случае расход воды еще больше упадет и насос начнет работать в неустановившемся режиме.

Если уровень воды в колодце понизится на 1 м, то нас спасет, как и в предыдущем случае, гарантийный запас, и насос, как и ранее, обеспечит откачку воды при условии, что фильтр чистый, однако расход воды уменьшится. Однако, если уровень воды понизится еще больше или засорится фильтр, то произойдет катастрофа!
Как откачивать воду с глубины 100 м?
Мы только что убедились, на практике насос может откачивать воду с поверхности, расположенной ниже уровня насоса не более, чем на 6. 7 м.
Чтобы откачивать воду с поверхности, расположенной ниже этого уровня, достаточно погрузить насос на дно колодца, как показано на рис. 78.15. Насос будет легко откачивать воду без всякой кавитации.
что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания
Для подъема воды на десяток метров никаких проблем не будет. Однако, если вам нужно поднять воду на большую высоту (20 м, 40 м, 100 м и даже больше), то один насос с этим не справится. Одним из решений может стать использование ‘»ступенчатой» схемы, как показано на рис. 78.16. Но такое решение будет достаточно сложным и дорогостоящим.
Кроме того, оно не всегда может быть реализовано. Например, как откачать воду с поверхности, лежащей ниже требуемого уровня подъема на 40 м и находящейся в узком колодце?

что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания

В этом случае можно использовать многоступенчатый насос (см. рис. 78.17), в котором ступени (крыльчатки) автоматически повышают напор при переходе от одной ступени к другой с минимальными потерями (на рис. 78.17 таких ступеней четыре).
Представим себе, что каждая ступень создает напор, равный 10 м вод. ст. Вода проходит через первую ступень и давление на входе во вторую ступень уже равно 10 м вод. ст. Во второй ступени напор также равен 10 м вод. ст., следовательно на выходе из нее давление воды будет равно 20 м вод. ст., и так далее.

Если вы хотите получить дополнительную информацию, см. раздел 97.

Источник

Основные рабочие параметры насосов

Работа насосов состоит из двух процессов: всасывания и нагнетания. Насос любого вида характеризуется следующими параметрами: высотой всасывания, высотой нагнетания, полным напором, подачей, мощностью и полным коэффициентом полезного действия (КПД).

Различают теоретическую, вакуумметрическую и геометрическую (практическую) высоту всасывания.

Вакуумметрическая высота всасывания (Нв) – это величина вакуума создаваемая насосом, а в энергетическом смысле – это энергия, выраженная в метрах, которая необходима жидкости для подъёма на высоту всасывания. Нв зависит, как правило, от мощности насоса, создающего вакуум и измеряется в метрах водного столба. Показания вакуумметра, установленного на насосе, соответствуют вакуумметрической высоте всасывания. Для пожарного насоса серии ПН-40 и его аналогов Нв = 8 м. вод. ст.

Геометрической (практической) высотой всасывания Нг называется разность отметок между поверхностью воды и осью насоса. Геометрическая высота всасывания зависит от значений и величин нескольких параметров:

Прямое влияние на величину Нг оказывает атмосферное давление, которое заметно меняется в зависимости от высоты над уровнем моря. Например, при высоте над уровнем моря 0 м атмосферное давление равно 10,33 м. вод. ст., а на высоте над уровнем моря 2000 м – 7,95 м. вод. ст.

Нг сильно зависит от давления насыщенных паров всасываемой жидкости. Давление насыщенных паров – это давление, при котором жидкость при данной температуре закипает (речь идёт о давлении жидкости ниже атмосферного). Давление насыщенных паров и, следовательно, высота всасывания в значительной степени зависят от температуры и вида перекачиваемой жидкости. Известно, что с уменьшением давления понижается температура кипения жидкости. Если давление всасывания (оно естественно ниже атмосферного) Рвс будет ниже давления насыщенных паров всасываемой жидкости Рn, то начнется образование пара и произойдет срыв в работе насоса.

Таким образом, обязательным условием нормальной работы насоса является:

Рn 2 (10 м. вод. ст.), а при температуре воды 20 ºС Рn = 0,024 кг/см 2 (0,24 м. вод. ст.), следовательно, чем выше температура жидкости, тем сложнее забрать её насосом. С этим явлением связана кавитация – процесс образования пузырьков воздуха в жидкости. При кавитации происходит самовскипание жидкости, пузырьки пара увлекаются движущимся потоком и, встречая твёрдые поверхности корпуса и рабочего колеса, разрушаются («схлопываются»). При этом выделятся большая энергия, из-за чего повреждаются и даже при длительном воздействии разрушаются поверхности внутренней полости насоса (явление кавитационной эрозии). Кавитация сопровождается шумом и треском внутри насоса. Во избежание преждевременного износа рабочих органов насоса не допускается его работа в кавитационном режиме.

Кавитационные явления могут возникать в случае работы насоса с большой геометрической высотой всасывания. Поэтому высота всасывания должна быть такой, при которой возникновение кавитации невозможно.

Максимальная допустимая высота всасывания может быть определена по формуле:

что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания

где: Рn – давление насыщенного пара;

γ – удельный вес жидкости;

hвс – потери напора во всасывающем трубопроводе;

ΔН – кавитационный запас.

Значение кавитационного запаса устанавливается таким, чтобы не было значительного снижения напора, и была ограничена скорость кавитационной эрозии. Например, для насосов серии ПН-40 кавитационный запас составляет 3 м.

Кавитационные явления могут также возникать при больших подачах насоса, вследствие понижения давления (увеличения вакуума) во входном патрубке насоса. Поэтому при появлении кавитации необходимо уменьшить подачу насоса.

Наконец, геометрическая высота всасывания зависит от потерь напора во всасывающей линии или величины преодолеваемого сопротивления во всасывающей линии.

где: S – сопротивление всасывающей линии;

Из всего сказанного следует, что геометрическая (практическая) высота всасывания Нг определятся выражением:

где: Нв – вакууметрическая высота всасывания;

hвс – потери напора во всасываемой линии;

hрп – температурные потери напора (давление насыщенных паров);

hр.атм – потери напора, зависящие от высоты местности над уровнем моря.

Например, для пожарного насоса серии ПН-40 Нг практически не превышает 7 м при работе в нормальных условиях, т.е. при атмосферном давлении Ратм =1 кг/см 2 (10,33 м. вод. ст.) и температуре воды 20 °С.

Обычно допустимая высота всасывания указывается заводами-изготовителями насосов в паспортах изделий.

Различают геометрическую и манометрическую высоту нагнетания.

Геометрическая высота нагнетания – это расстояние в метрах по вертикали от оси насоса до наивысшей точки нагнетания Нн.

Манометрической высотой нагнетания называется давление, создаваемое насосом Нман. Манометрическая высота нагнетания (показание манометра) всегда больше геометрической высоты нагнетания (реальной точки подачи жидкости) из-за возникающих потерь в напорной линии.

где: hн – потери напора в напорной линии, hн = S·Q 2 ;

S – сопротивление напорной линии;

Для высоты нагнетания теоретически пределов не существует, а практически она ограничивается прочностью отдельных деталей насосов и трубопроводов, а также мощностью двигателей привода насосов.

Полный напор, развиваемый насосом Н расходуется на подъем жидкости, преодоление сопротивлений во всасывающем и напорном трубопроводе и на создание свободного напора.

где: Нг – геометрическая высота подъема воды (м);

hвс + hн – потери напора во всасывающей и напорной линии (м);

Нсв – свободный напор (м).

На практике полный напор, развиваемый насосом, оценивают по показаниям манометра и вакуумметра.

Подача насоса – это количество жидкости, перекачиваемое насосом в единицу времени. Различают массовую подачу (кг/с) и объёмную подачу (м 3 /мин или л/с). Чаще всего подачу пожарных насосов указывают в объёмных единицах: м 3 /мин или л/с.

Существует соотношение между количеством жидкости входящей в насос Q1 и жидкости, выходящей из насоса Q2:

где: Qу – объёмные утечки жидкости через щелевые уплотнения.

Рабочие органы насоса во время работы предают энергию потоку жидкости. Эта энергия подводится от двигателя.

Для правильной оценки энергетических показателей мотор-насосной установки следует различать полезную (эффективную) и потребляемую мощность.

Полезная (эффективная) мощность (Ne) насоса идет на совершение работы по перемещению определенного объема жидкости Q на высоту Н и определяется по формуле.

что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания

где: ρ – плотность жидкости, кг/м 3 ;

g – ускорение свободного падения, м/с 2 ;

Q – подача насоса, м 3 /с;

Мощность, потребляемая насосом, всегда больше, чем полезная, т.к. часть энергии затрачивается на механические, гидравлические и объемные потери в насосе. Потребляемой мощностью называется мощность N, подводимая к рабочим органам насоса. Она определяется по формуле:

где: М – крутящий момент на валу насоса (двигателя), Н•м;

При передаче энергии от насоса к перекачиваемой жидкости происходят объемные, гидравлические и механические потери энергии

Известно, что фактическая подача насоса всегда меньше теоретической подачи, т.е. количество жидкости выходящей из насоса всегда меньше количества жидкости входящей в насос. Это происходит вследствие:

§ просачивания жидкости через сальники, клапаны и поршни, причем степень просачивания зависит от точности изготовления и состояния указанных деталей насоса;

§ запоздания открытия и закрытия клапанов;

§ наличия воздуха в жидкости.

Величина объемного КПД характеризует степень герметичности насоса, и определяется по формуле:

что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания

где: Q – количество жидкости выходящей из насоса;

Qу – утечки жидкости в насосе;

Q + Qу – количество жидкости входящей в насос.

Гидравлический КПД – это потери напора в насосе на трение и местные сопротивления. Результатом гидравлических потерь является уменьшение напора.

Значение гидравлического КПД показывает меру расхода энергии в насосе на преодоление сопротивления движения жидкости, и определяется по формуле:

что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания

где: Н – действительный (развиваемый) напор насоса;

ΔН – потери напора на преодоление сопротивлений внутри насоса;

Н + ΔН – теоретический напор насоса.

Механический КПД – это потери мощности на трение в подшипниках, уплотнениях вала и т.п. Значение механического КПД характеризует качество изготовления и рациональность конструкции подшипников, сальников (манжет) и других узлов, где происходит трение деталей.

Механический КПД определяют по формуле:

что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания

где: N – мощность на рабочем колесе насоса;

ΔN – потери мощности на трение в подшипниках и сальниках насоса;

N + ΔN – мощность на валу насоса.

Полный КПД насоса учитывает все потери, которые возникают в нем при перекачивании жидкости. Он представляет собой произведение трех частных коэффициентов и характеризует отношение полезной мощности Nе к потребляемой N:

что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания

Технические требования к насосным агрегатам пожарных автомобилей

В связи с особенностями эксплуатации к насосным агрегатам пожарных автомобилей предъявляются следующие основные требования:

§ небольшие габаритные размеры и масса, что необходимо для рационального использования грузоподъемности и объема кузова пожарного автомобиля;

§ высокая надежность, в том числе при работе на загрязненной воде;

§ постоянная готовность к работе;

§ высокие кавитационные свойства;

§ пологая форма напорной характеристики, т. е. незначительное изменение напора насоса в диапазоне подач от нулевой до максимальной при постоянной частоте вращения (при крутопадающей форме напорной характеристики снижение подачи влечет за собой быстрое повышение напора, что может вызвать разрыв напорных рукавов, а повышение подачи – существенное снижение напора);

§ согласованность параметров насоса и двигателя, при отсутствии которой параметры насоса не могут быть реализованы на пожарном автомобиле;

§ минимальное время заполнения всасывающего трубопровода и насоса водой перед пуском с помощью вакуумной системы (не более 40 сек. с геометрической высоты всасывания не менее 7,5 м.);

§ простота и удобство управления насосной установкой;

§ возможность длительной непрерывной работы на максимальном режиме в установленном интервале температур окружающего воздуха (конструкция насосов нормального давления должна обеспечивать их непрерывную работу в номинальном режиме в течение не менее 6 ч., насосов высокого давления – не менее 2 ч.);

§ свободный доступ для технического обслуживания, его простота и удобство (отсутствие элементов, требующих периодической регулировки, минимальное число точек смазки и слива воды, возможность частичной разборки агрегатов непосредственно на пожарном автомобиле);

§ низкий уровень шума и отсутствие вибраций во время работы (средний уровень звука, создаваемый насосом при работе в номинальном режиме, должен быть не более 85 дБ.);

§ использование тех же сортов масел и смазок, какие применяются для агрегатов и узлов шасси пожарного автомобиля.

На пожарных автомобилях устанавливаются, как правило, насосы центробежного типа. Это обусловлено тем, что центробежные насосы обладают рядом важных достоинств: равномерностью подачи огнетушащих средств (подачей без пульсаций); способностью работать «на себя» (т.е. при перекрытии пожарного ствола, засорении или заломе пожарного рукава в системе подачи воды не повышается чрезмерно давление), простотой управления насосом и его обслуживания при эксплуатации на пожарах.

Для пожарных автомобилей важно, что центробежные насосы не требуют сложного привода от двигателя, а их габариты и массы относительно невелики.

В то же время, центробежные насосы имеют и ряд недостатков, важнейший из которых тот, что они не являются самовсасывающими – работают только после предварительного заполнения всасывающей линии и насоса водой. Этот недостаток компенсируют устройствами, позволяющими заполнять всасывающие тракты и полость насоса из цистерн. Кроме того, на пожарных автомобилях устанавливают вспомогательные насосы для заполнения полости всасывающего рукава и корпуса насоса водой. Для этой цели используют газоструйные, ротационные, поршневые и другие насосы. Вспомогательные насосы работают кратковременно, только при включении центробежного насоса в работу. Установка таких насосов усложняет конструкцию насосной установки, требует устройства дополнительного привода для их работы.

Напорная и энергетическая характеристика центробежного насосаопределяет зависимость напора, потребляемой мощности и К.П.Д. от подачи насоса. Эти зависимости изображают графически кривыми Q–H, Q–N и Q-η при постоянной частоте вращения рабочего колеса насоса n (см. рис. 3.7).

Напорную и энергетическую характеристику строят следующим образом. Регулируя степень открытия задвижки на напорном патрубке, при постоянной частоте вращения вала насоса, получают различные величины подачи Q. Каждому значению Q соответствует напор Н, мощность N и К.П.Д. η насоса. Затем на ось абсцисс наносят в принятом масштабе значения подачи, а на ось ординат – полученные значения Н, N и η. Полученные точки соединяют плавными линиями. По графику характеристики Q-η (см. рис. 3.7) видно, что

что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания
что называется теоретической высотой всасывания. Смотреть фото что называется теоретической высотой всасывания. Смотреть картинку что называется теоретической высотой всасывания. Картинка про что называется теоретической высотой всасывания. Фото что называется теоретической высотой всасывания

максимальному значению К.П.Д. (точка А) соответствует определённая подача QА и напор НА. Точка А называется оптимальной и соответствует оптимальному режиму работы насоса.

Влияние частоты вращения рабочего колеса на параметры работы центробежного насоса проявляется следующим образом.

Подача центробежного насоса изменяется пропорционально частоте вращения рабочего колеса: Q1/Q2 = n1/n2.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *