что называется относительной магнитной проницаемостью
Что такое магнитная проницаемость (мю)
Из многолетней технической практики нам известно, что индуктивность катушки сильно зависит от характеристик среды, где эта катушка находится. Если в катушку из медной проволоки, обладающую известной индуктивностью L0, добавить ферромагнитный сердечник, то при прочих прежних обстоятельствах токи самоиндукции (экстратоки замыкания и размыкания) в данной катушке многократно увеличатся, эксперимент это подтвердит, что и будет означать возросшую в несколько раз индуктивность, которая теперь станет равна L.
Допустим, что окружающая среда, вещество, заполняющее пространство внутри и вокруг описанной катушки, однородно, и порождаемое текущим по ее проводу током, магнитное поле локализовано только в этой обозначенной области, не выходя за ее границы.
Если катушка имеет тороидальную форму, форму замкнутого кольца, то данная среда вместе с полем окажется сосредоточена только внутри объема катушки, ибо снаружи тороида практически полностью магнитное поле отсутствует. Справедливо данное положение и для длинной катушки — соленоида, у которого все магнитные линии так же сосредоточены внутри — по оси.
Для примера допустим, что индуктивность некоторого контура или катушки без сердечника в вакууме равна L0. Тогда для такой же катушки, но уже в однородном веществе, которое заполняет пространство, где присутствуют магнитные силовые линии данной катушки, индуктивность пусть будет равна L. В этом случае получится, что отношение L/L0 – это есть ни что иное, как относительная магнитная проницаемость названного вещества (иногда говорят просто «магнитная проницаемость»).
Становится очевидно: магнитная проницаемость — это величина, которая характеризует магнитные свойства данного вещества. Она зачастую зависит от состояния вещества (и от условий окружающей среды, таких как например температура и давление) и от его рода.
Введение термина «магнитная проницаемость», применительно к веществу, размещенному в поле магнитном, аналогично введению термина «диэлектрическая проницаемость» для вещества находящегося в поле электрическом.
Значение магнитной проницаемости, определяемое по приведенной выше формуле L/L0, может быть выражена и как отношение абсолютных магнитных проницаемостей данного вещества и абсолютной пустоты (вакуума).
Фактически видим, что среда (магнетик) влияет на индуктивность контура, и это однозначно свидетельствует о том, что изменение среды приводит к изменению магнитного потока Ф, пронизывающего контур, а значит и к изменению индукции В, применительно к любой точке магнитного поля.
Это происходит потому, что среда намагничивается, и сама начинает обладать магнитным полем. Вещества, способные таким образом намагничиваться, называют магнетиками.
Физическая картина явления
Из вышеизложенного становится ясно, что различные вещества (магнетики) под действием магнитного поля контура с током намагничиваются, и в результате получается магнитное поле, являющееся суммой магнитных полей — магнитного поля от намагниченной среды плюс от контура с током, потому оно отличается по величине от поля только контура с током без среды. Причина намагничивания магнетиков кроется в существовании мельчайших токов внутри каждого их атома.
По значению магнитной проницаемости, вещества классифицируются на диамагнетики (меньше единицы — намагничиваются против приложенного поля), парамагнетики (больше единицы — намагничиваются по направлению приложенного поля) и ферромагнетики (сильно больше единицы — намагничиваются, и обладают намагниченностью после отключения приложенного магнитного поля).
Ферромагнетикам свойственен гистерезис, поэтому понятие «магнитная проницаемость» в чистом виде к ферромагнетикам не применимо, но в некотором диапазоне намагничивания, в некотором приближении, можно выделить линейный участок кривой намагничивания, для которого получится оценить магнитную проницаемость.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Что называется относительной магнитной проницаемостью
Многочисленные опыты свидетельствуют о том, что все вещества, помещенные в магнитное поле, намагничиваются и создают собственное магнитное поле, действие которого складывается с действием внешнего магнитного поля:
Диамагнетиками называются вещества, в которых внешнее магнитное поле ослабляется. Это значит, что магнитные поля атомов таких веществ во внешнем магнитном поле направлены противоположно внешнему магнитному полю (µ Рис. 2
2) собственным вращением (спином) электронов (спиновой магнитный момент) (рис. 2).
Для любознательных. Магнитный момент контура равен произведению силы тока в контуре на площадь, охватываемую контуром. Его направление совпадает с направлением вектора индукции магнитного поля в середине контура с током.
Так как в атоме плоскости орбит различных электронов не совпадают, то вектора индукций магнитных полей [1], созданные ими (орбитальные и спиновые магнитные моменты), направлены под разными углами друг к другу. Результирующий вектор индукции многоэлектронного атома равен векторной сумме векторов индукций полей, создаваемых отдельными электронами. Не скомпенсированными полями обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками результирующий вектор индукции равен 0.
Подробнее механизм намагничивания диамагнетиков описан здесь: Слободянюк А.И. Физика 10. §13.3 Типы магнетиков.
Вещества, в которых внешнее магнитное поле усиливается в результате сложения с магнитными полями электронных оболочек атомов вещества из-за ориентации атомных магнитных полей в направлении внешнего магнитного поля, называются парамагнетиками (µ > 1).
Парамагнетики очень слабо усиливают внешнее магнитное поле. Магнитная проницаемость парамагнетиков отличается от единицы лишь на доли процента. Например, магнитная проницаемость платины равна 1,00036. Из – за очень малых значений магнитной проницаемости парамагнетиков и диамагнетиков их влияние на внешнее поле или воздействие внешнего поля на парамагнитные или диамагнитные тела очень трудно обнаружить. Поэтому в обычной повседневной практике, в технике парамагнитные и диамагнитные вещества рассматриваются как немагнитные, то есть вещества, не изменяющие магнитное поле и не испытывающие действия со стороны магнитного поля. Примерами парамагнетиков являются натрий, кислород, алюминий (μ = 1,00023).
В парамагнетиках молекулы обладают собственным магнитным полем. В отсутствии внешнего магнитного поля из-за теплового движения вектора индукций магнитных полей атомов и молекул ориентированы хаотически, поэтому их средняя намагниченность равна нулю (рис. 4, а). При наложении внешнего магнитного поля на атомы и молекулы начинает действовать момент сил, стремящийся повернуть их так, чтобы их поля были ориентированы параллельно внешнему полю. Ориентация молекул парамагнетика приводит к тому, что вещество намагничивается (рис. 4, б).
Полной ориентации молекул в магнитном поле препятствует их тепловое движение, поэтому магнитная проницаемость парамагнетиков зависит от температуры. Очевидно, что с ростом температуры магнитная проницаемость парамагнетиков уменьшается.
Ферромагнетики
Вещества, значительно усиливающие внешнее магнитное поле, называются ферромагнетиками (никель, железо, кобальт и др.). Примерами ферромагнетиков являются кобальт, никель, железо (μ достигает значения 8·10 3 ).
Само название этого класса магнитных материалов происходит от латинского имени железа — Ferrum. Главная особенность этих веществ заключается в способности сохранять намагниченность в отсутствии внешнего магнитного поля, все постоянные магниты относятся к классу ферромагнетикам. Кроме железа ферромагнитными свойствами обладают его «соседи» по таблице Менделеева — кобальт и никель. Ферромагнетики находят широкое практическое применение в науке и технике, поэтому разработано значительное число сплавов, обладающих различными ферромагнитными свойствами.
Таким образом, и в не намагниченном состоянии внутри ферромагнетика существуют сильные магнитные поля, ориентация которых при переходе от одного домена к другому меняется случайным хаотическим образом. Если размеры тела значительно превышают размеры отдельных доменов, то среднее магнитное поле, создаваемое доменами этого тела, практически отсутствует.
Если поместить ферромагнетик во внешнее магнитное поле B0, то магнитные моменты доменов начинают перестраиваться. Однако механического пространственного вращения участков вещества не происходит. Процесс перемагничивания связан с изменением движения электронов, но не с изменением положения атомов в узлах кристаллической решетки. Домены, имеющие наиболее выгодную ориентацию относительно направления поля, увеличивают свои размеры за счет соседних «неправильно ориентированных» доменов, поглощая их. При этом поле в веществе возрастает весьма существенно.
Свойства ферромагнетиков
1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии;
2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри. Так для чистого железа значение температуры Кюри приблизительно равно 900°C;
3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рисунке 6 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B0:
4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 7).
Это объясняется тем, что вначале с увеличением B0 магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B’0 наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B0 магнитная индукция B1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):
5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А) (рис. 8), а затем уменьшать ток в соленоиде, а вместе с ним и B0, то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B0 = 0 (ток в соленоиде выключен), индукция будет равна Br (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, т.е. приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до Boc, размагничивают стержень (B = 0).
При дальнейшем увеличении B0 можно намагнитить стержень до насыщения (точка А’).
Уменьшая теперь B0 до нуля, получают опять постоянный магнит, но с индукцией –Br (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B0 станет равной Boc. Продолжая увеличивать я B0, снова намагничивают стержень до насыщения (точка А).
Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B0. Это отставание называется явлением гистерезиса. Изображенная на рисунке 8 кривая называется петлей гистерезиса.
Гистерезис (греч. ὑστέρησις — «отстающий») — свойство систем, которые не сразу следуют за приложенными силам.
Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности и коэрцитивной силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения коэрцитивной силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах — реле, трансформаторах, магнитопроводах и др.
СОДЕРЖАНИЕ
Объяснение
где проницаемость μ является скаляром, если среда изотропна, или тензором второго ранга для анизотропной среды.
B связано с силой Лоренца на движущемся заряде q :
Относительная проницаемость и магнитная восприимчивость
Диамагнетизм
Парамагнетизм
Гиромагнетизм
Для гиромагнитных сред (см. Вращение Фарадея ) реакция магнитной проницаемости на переменное электромагнитное поле в микроволновой частотной области рассматривается как недиагональный тензор, выражаемый следующим образом:
Значения для некоторых распространенных материалов
Хороший материал магнитопровода должен иметь высокую проницаемость.
Для пассивной магнитной левитации требуется относительная проницаемость ниже 1 (что соответствует отрицательной восприимчивости).
Комплексная проницаемость
Если понимать проницаемость как отношение плотности магнитного потока к магнитному полю, то отношение векторов можно записать и упростить как
так что проницаемость становится комплексным числом.
По формуле Эйлера комплексная проницаемость может быть переведена из полярной формы в прямоугольную:
который позволяет измерить, сколько энергии теряется в материале по сравнению с тем, сколько энергии хранится.
Словари
В случае однородной изотропной среды магнитная проницаемость m:
Магнитная проницаемость связана с магнитной восприимчивостью (см. МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ) следующим образом:
m = 1 + c (в единицах СИ); m = 1 + 4pc (в единицах СГС).
Магнитная проницаемость физического вакуума m =1, так как c=0.
Магнитная проницаемость показывает, во сколько раз абсолютная магнитная проницаемость данного материала больше магнитной постоянной, т. е., во сколько раз магнитное поле макротоков Н усиливается за счет поля микротоков среды. Магнитная проницаемость воздуха и большинства веществ, за исключением ферромагнитных материалов, близка к единице.
В технике используется несколько видов магнитной проницаемости в зависимости от конкретных применений магнитного материала. Относительная магнитная проницаемость показывает, во сколько раз в данной среде сила взаимодействия между проводами с током изменяется по сравнению с вакуумом. Численно равна отношению абсолютной магнитной проницаемости к магнитной постоянной. Абсолютная магнитная проницаемость равна произведению магнитной проницаемости на магнитную постоянную.
У диамагнетиков c0 и m > 1. В зависимости от того, измеряется ли m ферромагнетиков в статическом или переменном магнитном поле, ее называют соответственно статической или динамической магнитной проницаемостью.
Магнитная проницаемость ферромагнетиков сложным образом зависит от Н. Из кривой намагничивания ферромагнетика можно построить зависимость магнитной проницаемости от Н Магнитную проницаемость, определенную по формуле:
называют статической магнитной проницаемостью. Она пропорциональна тангенсу угла наклона секущей, проведенной из начала координат через соответствующую точку на основной кривой намагничивания. Предельное значение магнитной проницаемости mн при напряженности магнитного поля, стремящейся к нулю, называют начальной магнитной проницаемостью. Эта характеристика имеет важнейшее значение при техническом использовании многих магнитных материалов. Экспериментально ее определяют в слабых магнитных полях с напряженностью порядка 0,1 А/м.
При одновременном воздействии на магнитный материал постоянного Нo и переменного НМАГНИТНАЯ ПРОНИЦАЕМОСТЬ магнитных полей и, обычно, при условии НМАГНИТНАЯ ПРОНИЦАЕМОСТЬ
Физика. 11 класс
Конспект урока
Урок 4. Магнитные свойства вещества. Электроизмерительные приборы
Перечень вопросов, рассматриваемых на уроке:
1. Магнитные свойства вещества.
2. Свойства диа-, пара- и ферромагнетиков.
3. Принцип действия электроизмерительных приборов.
Магнитная проницаемость – это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.
Диамагнетики – вещества, у которых магнитная проницаемость чуть меньше единицы. К таким веществам относятся золото, серебро, углерод, висмут.
Парамагнетики – вещества, у которых магнитная проницаемость чуть больше единицы. Это алюминий, вольфрам, щелочные металлы, магний, платина.
Ферромагнетики – вещества у которых магнитная проницаемость много больше единицы. Это железо, никель, кобальт, и сплавы металлов.
Точка Кюри – температура, при которой ферромагнетики теряют ферромагнитные свойства.
Ферриты – ферромагнитные материалы, не проводящие электрического тока.
Основная и дополнительная литература по теме:
1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. С. 27-30.
2.Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. С. 113.
3. ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.
Теоретический материал для самостоятельного изучения.
Магнитной проницаемостью вещества называется физическая скалярная величина показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.
Французский физик Андре Мари Ампер сравнивал магнитные поля, создаваемые полосовым магнитом и проводниками с током. В итоге, Ампер выдвинул гипотезу, что внутри молекул и атомов циркулируют элементарные электрические токи. Круговые электрические токи – это токи, обусловленные орбитальными движениями электронов вокруг ядра.
Диамагнетики – это вещества, у которых магнитная проницаемость чуть меньше единицы. К таким веществам относятся золото, серебро, углерод, висмут. Магнитная проницаемость висмута равна 0,9998. Значит, магнитное поле ослабляется, когда в него помещают это вещество В˂В0. Это означает, что вектор магнитной индукции поля, создаваемого веществом направлен противоположно вектору магнитной индукции поля, создаваемого током.
Парамагнетики – вещества, у которых магнитная проницаемость чуть больше единицы. Это алюминий, вольфрам, щелочные металлы, магний, платина. Эти вещества намагничиваются очень слабо, намагничиваются вдоль намагничивающего поля. Вектор магнитной индукции поля, создаваемого веществом, направлен в ту же сторону, что и вектор магнитной индукции поля, создаваемого током.
Ферромагнетики – это вещества, у которых магнитная проницаемость во много раз больше единицы. Это такие вещества как железо, кобальт, никель и сплавы металлов. Для железа магнитная проницаемость равна одна тысяча (1000).
Магнитные поля создаются ферромагнетиками не только вследствие обращения электронов вокруг ядер, но и вследствие их собственного вращения. Собственный вращательный момент (момент импульса) электрона называется спином. Согласно простейшим представлениям, электроны вращаясь вокруг собственной оси обладая зарядом, имеют, магнитное поле наряду с полем, появляющимся за счёт их орбитального движения вокруг ядер. В ферромагнетиках существуют области с параллельными ориентациями спинов, называемыми доменами; размеры доменов порядка 0.5 мкм. Параллельная ориентация спинов обеспечивает доменам минимум потенциальной энергии. Если ферромагнетик не намагничен, то ориентация доменов хаотична и суммарное магнитное поле, создаваемой доменами, равно нулю. При включении внешнего магнитного поля домены ориентируются вдоль линий магнитной индукции этого поля, и индукция магнитного поля в ферромагнетиках увеличивается, становясь в тысячи и даже миллионы раз больше индукции внешнего поля
Ферромагнитные свойства у веществ существуют только в определённой области температуры. Температура, при которой ферромагнитные материалы теряют свои ферромагнитные свойства, называют точкой Кюри по имени открывшего данное явление французского учёного Пьера Кюри. Если сильно нагреть намагниченный образец, то он потеряет способность притягивать железные предметы. Точка Кюри для железа 753 градусов по Цельсию, для кобальта 1000 градусов по Цельсию. Существуют ферромагнитные сплавы, у которых точка Кюри менее 100 градусов. Первые детальные исследования магнитных свойств ферромагнетиков были выполнены выдающимся русским физиком А.Г. Столетовым.
Большое применение получили ферромагнитные материалы, не проводящие электрического тока – ферриты. Это химические соединения оксидов железа с оксидами других веществ. К их числу относится и магнитный железняк.
Стальной или железный сердечник в катушке усиливает создаваемое ею магнитное поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателей и т. д. изготовляют из ферромегнетиков. При выключении внешнего магнитного поля ферромагнетик остаётся намагниченным, таким образом создаёт магнитное поле в окружающем пространстве. Это объясняется тем, что домены не возвращаются в прежнее положение и их ориентация частично сохраняется. Благодаря этому существуют постоянные магниты. Постоянные магниты широко применяются в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах и т.д. Электроизмерительный прибор является необходимым устройством в связи, промышленности, на транспорте, в медицине и в научных исследованиях.
Примеры и разбор решения заданий:
1. Для каких целей применяют ферромагнитные материалы? Выберите один правильный ответ.
1) для усиления силы тока;
2) для ослабления магнитного поля;
3) для усиления магнитного поля;
4) для ослабления силы тока.
Пояснение: ферромагнетики и ферромагнитные материалы это вещества, которые создают наиболее сильные магнитные поля.
Правильный ответ: 3) для усиления магнитного поля.
2. По графику определите магнитную проницаемость стали при индукции В0 намагничивающего поля 1) 0,4 мТл, 2) 1,2 мТл.
По определению магнитная проницаемость µ показывает, во сколько раз индукция магнитного поля В в веществе превышает индукцию намагничивающего поля В0 в вакууме: µ =
2) При В0 = 1.2 мТл, по графику В = 1,2 Тл