что называется объемом выборки
Объем выборки: понятие и способы расчета
Объем выборки – это количество единиц попавших в выборочную совокупность.
При определении объема выборки нужно прежде решить задачу требуемого исследователю уровня точности результата (Д), гарантируемого с некоторой заранее заданной доверительной вероятностью (Р).Существуют три стратегии расчета объема выборки.1. Стратегия предварительного расчета(до проведения исследования). Это лишь первоначальный ориентир, так как, не принимается во внимание из-за неопределенности разброс мнений; а поэтому исходят из соотношения 50:50% (половина ответов «да», половина «нет»).2. Стратегия последовательного расчета выборки.Используется, когда каждое интервью очень дорогостоящее или слишком длительное. Тогда объем выборки не рассчитывается заранее, а ставится в зависимость от результатов, полученных входе исследования. Например, сначала опрашивается 100 чело век, на основе полученных данных о разбросе оценки вычисляют требуемый объем. Если оказывается, что этого количества
опрошенных достаточно, то исследование прекращается. В противном случае добирают необходимое количество респондентов.3. Стратегия комбинированного расчета.Рассчитывая выборку по предварительной стратегии, получаем верхние пределы допустимых объемов выборки, то есть ту величину выборки, при достижении которой прекращается опрос по последовательной стратегии.На практике существуют удобные способы определения объемов выборки с помощью таблицы больших чисел и с помощью номограммы для определения объема выборки.На величину объема выборки также влияет типичный объем выборок, используемых в аналогичных исследованиях.
Для проведения социологического исследования недостаточно просто определить объект исследования. Нерационально опрашивать всех людей, составляющих объект исследования (иногда это могут быть тысячи людей). Обычно СИ имеют не сплошной, а выборочный характер. То есть по определенным и строгим правилам исследователь отбирает небольшое (относительно всего объема выборки) число людей, которые по своим социально-демографическим признакам и другим каким-то характеристикам полностью соответствуют структуре изучаемого объекта.
Что называется объемом выборки
1. Задачи математической статистики.
4. Статистическое распределение выборки.
5. Эмпирическая функция распределения.
6. Полигон и гистограмма.
7. Числовые характеристики вариационного ряда.
8. Статистические оценки параметров распределения.
9. Интервальные оценки параметров распределения.
1. Задачи и методы математической статистики
Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным- контролируемый размер детали.
Иногда проводят сплошное исследование, т.е. обследуют каждый объект относительно нужного признака. На практике сплошное обследование применяется редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование не имеет смысла. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов (выборочную совокупность) и подвергают их изучению.
Основная задача математической статистики заключается в исследовании всей совокупности по выборочным данным в зависимости от поставленной цели, т.е. изучение вероятностных свойств совокупности: закона распределения, числовых характеристик и т.д. для принятия управленческих решений в условиях неопределенности.
Генеральная совокупность – это совокупность объектов, из которой производится выборка.
Выборочная совокупность (выборка) – это совокупность случайно отобранных объектов.
Если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n = 100.
При составлении выборки можно поступить двумя способами: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки делятся на повторные и бесповторные.
Повторной называют выборку, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.
Бесповторной называют выборку, при которой отобранный объект в генеральную совокупность не возвращается.
На практике обычно пользуются бесповторным случайным отбором.
Для того, чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Выборка должна правильно представлять пропорции генеральной совокупности. Выборка должна быть репрезентативной (представительной).
В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществлять случайно.
Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.
В американском журнале «Литературное обозрение» с помощью статистических методов было проведено исследование прогнозов относительно исхода предстоящих выборов президента США в 1936 году. Претендентами на этот пост были Ф.Д. Рузвельт и А. М. Ландон. В качестве источника для генеральной совокупности исследуемых американцев были взяты справочники телефонных абонентов. Из них случайным образом были выбраны 4 миллиона адресов., по которым редакция журнала разослала открытки с просьбой высказать свое отношение к кандидатам на пост президента. Обработав результаты опроса, журнал опубликовал социологический прогноз о том, что на предстоящих выборах с большим перевесом победит Ландон. И … ошибся: победу одержал Рузвельт.
Этот пример можно рассматривать, как пример нерепрезентативной выборки. Дело в том, что в США в первой половине двадцатого века телефоны имела лишь зажиточная часть населения, которые поддерживали взгляды Ландона.
На практике применяются различные способы отбора, которые можно разделить на 2 вида:
1. Отбор не требует расчленения генеральной совокупности на части (а) простой случайный бесповторный; б) простой случайный повторный).
2. Отбор, при котором генеральная совокупность разбивается на части. (а) типичный отбор; б) механический отбор; в) серийный отбор).
Простым случайным называют такой отбор, при котором объекты извлекаются по одному из всей генеральной совокупности (случайно).
Типичным называют отбор, при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типичной» части. Например, если деталь изготавливают на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукции каждого станка в отдельности. Таким отбором пользуются тогда, когда обследуемый признак заметно колеблется в различных «типичных» частях генеральной совокупности.
Механическим называют отбор, при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект. Например, если нужно отобрать 20 % изготовленных станком деталей, то отбирают каждую 5-ую деталь; если требуется отобрать 5 % деталей- каждую 20-ую и т.д. Иногда такой отбор может не обеспечивать репрезентативность выборки (если отбирают каждый 20-ый обтачиваемый валик, причем сразу же после отбора производится замена резца, то отобранными окажутся все валики, обточенные затупленными резцами).
Серийным называют отбор, при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергают сплошному обследованию. Например, если изделия изготавливаются большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков.
На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы.
4. Статистическое распределение выборки
Если количество вариант велико или выборка производится из непрерывной генеральной совокупности, то вариационный ряд составляется не по отдельным точечным значениям, а по интервалам значений генеральной совокупности. Такой вариационный ряд называется интервальным. Длины интервалов при этом должны быть равны.
Статистическим распределением выборки называется перечень вариант и соответствующих им частот или относительных частот.
Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (суммы частот, попавших в этот интервал значений)
Точечный вариационный ряд частот может быть представлен таблицей:
Как определить размер выборки?
Статистика знает все. И Ильф и Е. Петров, «12 Стульев»
Представьте себе, что вы строите крупный торговый центр и желаете оценить автомобильный поток въезда на территорию парковки. Нет, давайте другой пример… они все равно этого никогда не будут делать. Вам необходимо оценить вкусовые предпочтения посетителей вашего портала, для чего необходимо провести среди них опрос. Как увязать количество данных и возможную погрешность? Ничего сложного — чем больше ваша выборка, тем меньше погрешность. Однако и здесь есть нюансы.
Теоретический минимум
Не будет лишним освежить память, эти термины нам пригодятся далее.
Уже в самих определениях ошибки первого и второго рода имеется простор для дебатов и толкований. Как с ними определиться и какую выбрать в качестве нулевой? Если вы исследуете уровень загрязнения почвы или вод, то как сформулируете нулевую гипотезу: загрязнение присутствует, или нет загрязнения? А ведь от этого зависит объем выборки из общей популяции объектов.
Исходная популяция, также как и выборка может иметь любое распределение, однако среднее значение имеет нормальное или гауссово распределение благодаря Центральной Предельной Теореме.
Относительно параметров распределения и среднего значения в частности возможно несколько типов умозаключений. Первое из них называется доверительным интервалом. Он указывает на интервал возможных значений параметра, с указанным коэффициентом доверия. Так например 100(1-α)% доверительный интервал для μ будет таким (Ур. 1).
Второе из умозаключений — проверка гипотезы. Оно может быть примерно таким.
Если нам нужно проверить значение μ для одной выборки из общей совокупности, то критерий обретет вид.
Как видим погрешность действительно уменьшается вместе с ростом количества входных данных. Откуда легко вывести искомое (Ур. 4).
Практика — считаем с R
Проверим гипотезу о том, что среднее значение данной выборки количества насекомых в ловушке равно 1.
и наконец получаем критический интервал для среднего значения: 1.05 — 2.22.
В итоге, следует отбраковать H0 и принять H1 так как с вероятностью 95%, μ > 1.
Поправка на ветер
На самом деле нет никаких причин, полагать, что нам будет известна σ (дисперсия), в то время как μ (среднее) нам еще только предстоит оценить. Из-за этого уравнение 4 имеет мало практической пользы, кроме особо рафинированных примеров из области комбинаторики, а реалистичное уравнение для n несколько сложнее при неизвестной σ (Ур. 5).
Обратите внимание, что σ в последнем уравнении не с шапкой (^), а тильдой (
). Это следствие того, что в самом начале у нас нет даже оценочного стандартного отклонения случайной выборки — , и вместо нее мы используем запланированное —
. Откуда же мы берем последнее? Можно сказать, что с потолка: экспертная оценка, грубые прикидки, прошлый опыт и т. д.
А что на счет второго слагаемого правой стороны 5-го уравнения, откуда оно взялось? Так как , необходима поправка Гюнтера.
Помимо уравнений 4 и 5 есть еще несколько приблизительно-оценочных формул, но это уже заслуживает отдельного поста.
Конспект курса «Основы статистики»
1. Введение
Способы формирования репрезентативной выборки:
Простая случайная выборка (simple random sample)
Стратифицированная выборка (stratified sample)
Групповая выборка (cluster sample)
Типы переменных:
непрерывные (рост в мм)
дискретные (количество публикаций у учёного)
Ранговые (успеваемость студентов)
Гистограмма частот:
Позволяет сделать первое впечатление о форме распределения некоторого количественного признака.
Описательные статистики:
Меры центральной тенденции (узкий диапазон, высокие значения признака):
( используется для среднего значения из выборки, а для генеральной совокупности латинская буква
)
Свойства среднего:
Если к каждому значению выборки прибавить определённое число, то и среднее значение увеличится на это число.
Если к каждому значению выборки прибавить определённое число, то и среднее значение увеличится на это число.
Если для каждого значения выборки, рассчитать такой показатель как его отклонение от среднего арифметического, то сумма этих отклонений будет равняться нулю.
Меры изменчивости (широкий диапазон, вариативность признака):
При добавлении сильно отличающегося значения данные меняются сильно и могут быть некорректные.
Дисперсия генеральной совокупности:
(среднеквадратическое отклонение генеральной совокупности)
(среднеквадратическое отклонение выборки)
Свойства дисперсии:
Квартили распределения и график box-plot
Нормальное распределение
Отклонения наблюдений от среднего подчиняются определённому вероятностному закону.
Стандартизация
Правило «двух» и «трёх» сигм
Центральная предельная теорема
Есть признак, распределенный КАК УГОДНО* с некоторым средним и некоторым стандартным отклонением. Тогда, если выбирать из этой совокупности выборки объема n, то их средние тоже будут распределены нормально со средним равным среднему признака в ГС и стандартным отклонением .
30″ alt=»SE = \frac
Доверительные интервалы для среднего
Доверительный интервал является показателем точности измерений. Это также показатель того, насколько стабильна полученная величина, то есть насколько близкую величину (к первоначальной величине) вы получите при повторении измерений (эксперимента).
Идея статистического вывода
2. Сравнение средних
T-распределение
Если число наблюдений невелико и \sigma неизвестно (почти всегда), используется распределение Стьюдента (t-distribution).
Унимодально и симметрично, но: наблюдения с большей вероятностью попадают за пределы от
«Форма» распределения определяется числом степеней свободы ().
С увеличением числа распределение стремится к нормальному.
t-распределение используется не потому что у нас маленькие выборки, а потому что мы не знаем стандартное отклонение в генеральной совокупности.
Сравнение двух средних; t-критерий Стьюдента
Критерий, который позволяет сравнивать средние значения двух выборок между собой, называется t-критерий Стьюдента.
Условия для корректности использования t-критерия Стьюдента:
Две независимые группы
Формула стандартной ошибки среднего:
Формула числа степеней свободы:
Формула t-критерия Стьюдента:
Переход к p-критерию:
Проверка распределения на нормальность, QQ-Plot
Однофакторный дисперсионный анализ
Часто в исследованиях необходимо сравнить несколько групп между собой. В таком случае применятся однофакторный дисперсионный анализ.
Группы:
Нулевая гипотеза:
Альтернативная гипотеза:
Среднее значение всех наблюдений:
Общая сумма квадратов (Total sum of sqares):
Показатель, который характеризует насколько высока изменчивость данных, без учёта разделения их на группы.
Число степеней свободы:
— Межгрупповая сумма квадратов (Sum of sqares between groups)
— Внутригрупповая сумма квадратов (Sum of sqares within groups)
F-значение (основной статистический показатель дисперсионного анализа):
При делении значения межгрупповой суммы квадратов на число степеней свободы, полученный показатель усредняется.
Поэтому формула F-значения часто записывается:
Множественные сравнения в ANOVA
Проблема множественных сравнений:
Поправка Бонферрони
Самый простой (и консервативный) метод: P-значения умножаются на число выполненных сравнений.
Критерий Тьюки
Критерий Тьюки используется для проверки нулевой гипотезы против альтернативной гипотезы
, где индексы
и
обозначают любые две сравниваемые группы.
Указанные сравнения выполняются при помощи критерия Тьюки, который представляет собой модифицированный критерий Стьюдента:
где — рассчитываемая в ходе дисперсионного анализа внутригрупповая дисперсия.
Многофакторный ANOVA
При применении двухфакторного дисперсионного анализа исследователь проверяет влияние двух независимых переменных (факторов) на зависимую переменную. Может быть изучен также эффект взаимодействия двух переменных.
Исследуемые группы называют эффектами обработки. Схема двухфакторного дисперсионного анализа имеет несколько нулевых гипотез: одна для каждой независимой переменной и одна для взаимодействия.
Условия применения двухмерного дисперсионного анализа:
Генеральные совокупности, из которых извлечены выборки, должны быть нормально распределены.
Выборки должны быть независимыми.
Дисперсии генеральных совокупностей, из которых извлекались выборки, должны быть равными.
Группы должны иметь одинаковый объем выборки.
АБ тесты и статистика
3. Корреляция и регрессия
Понятие корреляции
Коэффициент корреляции – это статистическая мера, которая вычисляет силу связи между относительными движениями двух переменных.
Принимает значения [-1, 1]
— показатель силы и направления взаимосвязи двух количественных переменных.
Знак коэффициента корреляции показывает направление взаимосвязи.
Коэффициент детерминации
— показывает, в какой степени дисперсия одной переменной обусловлена влиянием другой переменной.
Равен квадрату коэффициента корреляции.
Принимает значения [0, 1]
Условия применения коэффициента корреляции
Для применения коэффициента корреляции Пирсона, необходимо соблюдать следующие условия:
Сравниваемые переменные должны быть получены в интервальной шкале или шкале отношений.
Распределения переменных и
должны быть близки к нормальному.
Число варьирующих признаков в сравниваемых переменных и
должно быть одинаковым.
Коэффициент корреляции Спирмена
Регрессия с одной независимой переменной
Уравнение прямой:
— (intersept) отвечает за то, где прямая пересекает ось y.
— (slope) отвечает за направление и угол наклона, образованный с осью x.
Метод наименьших квадратов
Формула нахождения остатка:
— остаток
— реальное значение
— значение, которое предсказывает регрессионная прямая
Сумма квадратов всех остатков:
Параметры линейной регрессии:
Гипотеза о значимости взаимосвязи и коэффициент детерминации
Коэффициенты линейной регрессии
Коэффициенты регрессии (β) — это коэффициенты, которые рассчитываются в результате выполнения регрессионного анализа. Вычисляются величины для каждой независимой переменной, которые представляют силу и тип взаимосвязи независимой переменной по отношению к зависимой.
Коэффициент детерминации
— доля дисперсии зависимой переменной (Y), объясняем регрессионной моделью.
— сумма квадратов остатков
— сумма квадратов общая
Условия применения линейной регрессии с одним предиктором
Линейная взаимосвязь и
Нормальное распределение остатков
Регрессионный анализ с несколькими независимыми переменными
Множественная регрессия (Multiple Regression)
Множественная регрессия позволяет исследовать влияние сразу нескольких независимых переменных на одну зависимую.
Требования к данным
линейная зависимость переменных
нормальное распределение остатков
проверка на мультиколлинеарность
нормальное распределение переменных (желательно)