что находится внутри амортизатора

Липнем к дороге. Часть 5. Амортизаторы. Основы.

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

Перевод 1-3 частей – by Romanoff ака Руслан ака Ryoshirano с моими дополнениями.
Перевод 4-6 частей – by dll ака Александр, тобишь мой.

Липнем к дороге. Часть 5. Аммортизаторы. Основы.

Последняя часть, в нашей серии посвященной конструкции подвески, где вы узнали все от влияния на управляемость до ее настройки. В этой части мы углубимся в мир амортизаторов, о которых все знают, но мало кто понимает как они устроены. Амортизаторы влияют на управляемость как ни один другой компонент подвески. К сожалению, настройка подвески одна из наименее понимаемых и очень часто ошибочных сетапов для машины.

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

В упрощенном представлении, то что делает амортизатор, это когда амортизационная стойка машины, наезжая на неровность, сжимается, поглощая силу удара. Поглощение ударов влияет на комфорт при езде по неровностям, и самое важное, удерживает колеса прижатыми к земле, поддерживая постоянный контакт с дорогой. Сила удара моментально переносится на пружину, сжимая ее, и сохраняется как потенциальная энергия. Как только колесо проезжает неровность, пружина начинает свой обратный ход, большинство накопленной энергии начинает передаваться на подвеску. Если сжатие и отскок никак не контролируется, то машина начнет колебаться вверх и вниз как мячик после проезда неровности как бабушкин Олдсмобиль. Это не лучший вариант если вы хотите комфортно передвигаться или получить максимальное сцепления с дорогой, нежели если бы шины прижимались к земле с постоянной силой для максимального сцепления. Если колебания станут достаточно серьезными, покрышка может оторваться от земли, соответственно ни о каком сцеплении с дорогой не может идти и речи.

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

Амортизатор помогает рассеивать энергию отбоя пружины, путем сопротивления движению подвески. При правильном демпфировании, собственные колебания пружины и машины затухают в течении одного цикла вверх или вниз. Это улучшает комфорт, возможности шины поддерживать сцепление с дорогой и контроль над машиной. Это скорее упрощенное объяснение того, какую работу выполняет амортизатор. Несмотря на всю простоту, амортизатор имеет огромное влияние на управляемость, пожалуй больше чем какой либо компонент подвески в отдельности. В этой серии статей мы получим более углубленное понимание того, как амортизаторы влияют на управляемость.

Как амортизатор работает?

Современный амортизатор в основном состоит из цилиндра заполненного маслом и цилиндра закрепленного на штоке. Один конец амортизатора закреплен на кузове, второй к подвеске. Проще говоря, амортизатор это гидравлическое устройство сопротивляющееся движению. Амортизатор состоит из множества клапанов и отверстий для дозирования потока масла проходящего через поршень и корпус, контролируя силу сопротивления качению. Когда поршень и шток двигается вверх-вниз в корпусе амортизатора во время движения по неровностям, вытесняемое масло движется с одной стороны поршня на другую. Единственный путь для масла, чтобы попасть на другую сторону поршня, это пройти через отверстия в нем, что вызывает сопротивление, как при сжатии так и отскоке.

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

Это сопротивление демпфирует собственные колебания вызванные пружинами. Амортизатор переводит выстреливающую энергию в тепловую, которая рассеивается в воздухе.

В основном, амортизатор имеет большее сопротивление на отскок нежели на сжатие, так как его основное назначение снижать колебания при отскоке, или говоря простым языком, предотвратить отскок подвески с большей силой чем при сжатии.

Сопротивление при сжатии, или демпфирование сжатия, помогает пружине предотвращать резкое проседание машины при наезде на неровность. Процент сжатия и отскока на машинах обычно в районе 70% отскока и 30% сжатия, хотя оно может быть в диапазоне от 50/50 до 90/10 в зависимости от применения амортизаторов.

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

Чтобы полностью понимать что такое амортизатор, важно знать различные типы амортизаторов и терминологию. Давайте пожалуй начнем с наиболее распространенного представителя в степи производительных подвесок, газовых амортизаторов.

Вы уже возможно слышали о газовых амортизаторах раньше. Большинство думает что подобные амортизаторы заполнены сжатым газом, как амортизаторы установленные на вашей крышке багажника или капота. Попробуйте подумать еще разок. Газовый амортизатор это просто амортизатор в котором масло держится под давлением с помощью газа, в отличии от обычного масляного амортизатора, где внутренности амортизатора находятся в условиях атмосферного давления.

Самая простая и главная причина для использования сжатого газа, это свойство жидкости в сжатом состоянии, при котором возрастает точка ее кипения. Когда давление снижается, точка кипения может снизиться значительно, даже ниже комнатной температуры. Вот почему вода на вершине горы закипает быстрее, а в вакууме может закипеть и при комнатной температуре.

При движениях подвески, масло проходит через отверстия и клапана амортизатора с большой скоростью. Давление масла на входящей стороне клапана увеличивается, в то время на выходящей стороне оно значительно падает. Давление падает на столько, что масло начинает местами закипать, создавая крошечные пузырьки. Локальное закипание вызывает нарушение плотности (кавитация), которое может стать настолько серьезным, что все масло внутри амортизатора начнет пениться. Когда вспененное масло проходит через клапана амортизатора, демпфирующая сила становится непостоянной и демпфирование сильно снижается. Это явление называют провал амортизатора. Провал амортизатора может произойти в любой момент при агрессивном стиле вождения.
Чтобы помочь предотвратить провал, конструкторы амортизаторов сжали масло внутри с помощью инертного газа, такого как Азот. Подобно тому, как скороварка ускоряет приготовление пищи за счет повышения температуры кипения, газонаполненные амортизаторы значительно противостоят нарушению плотности (кавитации) и провалу благодаря использованию высокого внутреннего давления внутри корпуса амортизатора чтобы повысить точку кипения масла.

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

На рынке производительных амортизаторов вы сможете найти два типа амортизаторов, двух-трубные и одно-трубные. Оба типа амортизаторов могут быть газонаполненными.

Двух-трубные амортизаторы наиболее распространенные на рынке. Их называют так, поскольку они состоят из двух трубок, одна внутри другой. Поршень амортизатора и шток находятся во внутренней трубке. Поток масла при сжатии и отскоке регулируется при помощи клапана в поршне и клапана находящегося между внутреней и наружной трубками, называемого донный клапан. Двух-трубные амортизаторы недороги в изготовлении, поскольку допускают погрешности при производстве. В связи с этим их ставят на большинство автомобилей с завода.

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

Используя масло внутри амортизатора появляется проблема при его работе, это перемещение объемов масла, она вызвана тем что большинство жидкостей по сути несжимаемы: масло занимает столько же места независимо от давления под котором оно находится. Чтобы создать пространство, которое будет изменяться под давлением, закачивают газ в верхнюю часть наружной трубки. Этот объем газа будет расти и уменьшаться во время изменения давления внутри амортизатора, как масло которое движется вверх и вниз. Без этого амортизатор не смог бы сжаться, поскольку маслу было бы некуда деваться, поскольку больший объем занимает шток. Для обеспечения движения штока, в большинство двух трубных амортизаторов закачивают воздух или газ в наружную трубку. Газ в газонаполненных двухтрубных амортизаторах находится под давлением около 5 бар, такие амортизаторы называются низкого давления.

Очевидно, если есть амортизаторы низкого давления, то есть и высокого, в большинстве своем одно-трубные, в них газ находится под давлением от 10 до 20 бар. Такое давление в амортизаторе создает реакцию, которая действует как преднатяг пружины, но в то же время не влияет на силу необходимую для сжатия подвески в самом начале ее хода.

Большинство твух-трубных амортизаторов контролируют демпфирующую силу при помощи отверстий в поршне и жесткости пружин в клапанах контролирующих поток через поршень и донный клапан. Донный клапан пропускает масло которое перемещается из внутренней трубки под давлением штока, во внешнюю. Клапана на поршне пропускают масло при любом ходе подвески.

Основной недостаток двух-трубной конструкции, это то что сила демпфирования становится слабее при повторяющихся движениях, нежели в одно-трубных. Низкое давление внутри амортизатора означает что масло все же может вспениваться при жесткой манере езды, а также газ смешиваться с маслом. По замыслу конструкции, масло движется через два набора клапанов. Это делает клапаны менее зависимыми от движения штока. Поскольку внутренняя трубка довольно небольшого диаметра, двух-трубный амортизатор также имеет небольшой поршень с небольшой площадью контакта со стенками трубки, что приводит к увеличению износа.

От внутренней и наружной трубки, а также газом окружающим внутреннюю трубку, тепло рассеивается очень долго, делая двух-трубный амортизатор наименее эффективным в плане рассеивания тепла. Горячий амортизатор подразумевает нагретое масло, которое стремиться вспениться, делая демпфирование нелинейным. Высокая температура также делает масло более склонным к кавитации поскольку температура масла становится близкой к точки кипения.

Еще одним недостатком двух-трубных амортизаторов является отсутствие какого либо барьера, отделяющего газ во внешней трубке от масла. Другими словами, масло с газом могут смешиваться, особенно в условиях жесткого вождения, вызывая хаотичные и непредсказуемые изменения в силе демпфирования. Амортизатор должен быть установлен вертикально штоком вверх, донным клапаном вниз, так чтобы клапан оставался погруженным. Если донный клапан подвергнется воздействию газа, он окажется совершенно неэффективным. Иногда газ, помещают в пластиковый контейнер находящийся между внешней и внутренней трубкой, что предотвращает смешивание газа с маслом. Это решение не на долго помогает избежать смешивания, поскольку из за постоянных движений пластик быстро изнашивается, позволяя газу все же смешаться с маслом.

Иногда производители амортизаторов недобросовестно называют свою продукцию “газовые амортизаторы”, и используют куски пены с закрытыми ячейками помещенной между наружной и внутренней трубками вместо газа. Газовыми являются разве что пузырьки внутри пены. При сжатии амортизатора пузырьки пены сжимаются, освобождая место для хода штока. Со временем масло внутри амортизатора атакует пену, разрушая ее, и в конечном итоге масло все равно смешивается с газом. Это к сожалению поршивий (и к сожалению распространенный) пример того как маркетологи используют термин “газовый амортизатор”.

К плюсам двух-трубной конструкции можно отнести меньшую склонность к повреждениям на плохих дорогах. Наружная трубка защищает внутреннюю, в которой находятся поршень, от вмятин. Двух-трубные также проще сделать регулируемыми, из-за того что регулировочному стержню проще добраться до донного клапана с внешней части амортизатора. На большинстве амортизаторов регулировка осуществляется с помощью игольчатого клапана, который влияет на поток масла проходящий к донному клапану, или изменением преднатяга пружины на самом донном клапане. Таким образом большинство недорогих регулируемых амортизаторов являются двух-трубными.

Другая причина дешевизны двух-трубных амортизаторов это то, что они не требуют такой точности при изготовлении как однотрубные высокого давления, это означает что они могут быть собраны с меньшими допусками, что дешевле в производстве. Побочным эффектом является низкая чувствительность таких амортизаторов к высокочастотным движениям, мелким кочкам, стыкам, разметки и прочему. Хотя с точки зрения высокой производительности, это не айс, двух-трубные амортизаторы благодаря низкому давлению или уровню газа внутри как правило имеют более плавных ход на волнистых поверхностях чем одно-трубные.

Некоторые из наиболее известных двух-трубных амортизаторов на рынке: KYB GR2 и AGX, Tokico Illumina, Koni Sport Желтый и Красный, Rancho, большинство Monroe и Gabriel HD, также недорогие линейки TEIN и KW. Не смотря на то, что двух-трубные имеют множество недостатков по сравнению с одно-трубным, недостатки на самом деле не столь страшны, множество двух-трубных амортизаторов не плохо работают как на улице так и на треке. Двух-трубные амортизаторы все же могут оказаться не плохим решением для повышения управляемости благодаря соотношению цена/производительность.

Источник

Основа подвески- амортизаторы

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

Самое главное о подвеске

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

Амортизаторы сегодня- это неотъемлемая часть подвески как на легковых, так и на грузовых автомобилях.
«Подвеска» автомобиля – общее понятие. Она служит для соединения колеса с кузовом автомобиля, но независимо от типа и конструктивных схем предназначена для обеспечения надёжного контакта колеса с поверхностью дороги и гашения колебаний кузова, вызванных неровностями дороги и инерционными силами при движении.

• При введении в подвеску упругого элемента (пружины или рессоры), толчок на кузов значительно смягчается, но вследствие инерции кузова колебательный процесс затягивается во времени, делая управление автомобилем трудным, а движение опасным. Автомобиль с такой подвеской раскачивается во всевозможных направлениях, и высока вероятность «пробоя» при резонансе (когда толчок от дороги совпадает со сжатием подвески в течение затянувшегося колебательного процесса).

• В современных подвесках, во избежание вышеперечисленных явлений, наряду с упругим элементом используют демпфирующий элемент – амортизатор. Он контролирует упругость пружины, поглощая большую часть энергии колебаний. При проезде неровности пружина, как и в предыдущем случае, сжимается. Когда же, после сжатия, она начнёт расширяться, стремясь превзойти свою нормальную длину, большую часть энергии зарождающегося колебания поглотит амортизатор. Продолжительность колебаний до возвращения пружины в исходное положение при этом уменьшится до 0,5 … 1,5 циклов.

Надёжный контакт колеса с дорогой обеспечивается не только шинами, основными упругими и демпфирующими элементами подвески (пружина, амортизатор), но и её дополнительными упругими элементами (буферы сжатия, резинометаллические шарниры), а также тщательным согласованием всех элементов между собой и с кинематикой направляющих элементов.

Таким образом, чтобы Ваш автомобиль «парил» над дорогой, между кузовом и дорожным полотном должны быть:
– шины
– основные упругие элементы
– дополнительные упругие элементы
– направляющие устройства подвесок
– демпфирующие элементы.

Шины первыми в автомобиле воспринимают неровности дороги и, насколько это возможно, в силу их ограниченной упругости, смягчают колебания от микропрофиля дороги.

Шины могут служить индикатором исправности подвески: быстрый и неравномерный (пятнами) износ шин свидетельствует о снижении сил сопротивления амортизаторов ниже допустимого предела.

Основные упругие элементы (пружины, рессоры) удерживают кузов автомобиля на одном уровне, обеспечивая упругую связь автомобиля с дорогой. В процессе эксплуатации упругость пружин меняется вследствие старения металла или из-за постоянной перегрузки, что приводит к ухудшению характеристик автомобиля:уменьшается высота дорожного просвета, изменяются углы установки колёс, нарушается симметричность нагрузки на колёса.

Пружины, а не амортизаторы удерживают вес автомобиля. Если дорожный просвет уменьшился и автомобиль «просел» без нагрузки, значит, пришло время менять пружины.

Дополнительные упругие элементы (резинометаллические шарниры или сайлентблоки, буферы сжатия) отвечают за подавление высокочастотных колебаний и вибраций от соприкосновения металлических деталей. Без них срок службы элементов подвески резко сокращается (в частности в амортизаторах: из-за усталостного износа клапанных пружин).

Регулярно проверяйте состояние резинометаллических соединений подвески. Поддерживая их работоспособность, Вы увеличите срок службы амортизаторов.

Направляющие устройства (системы рычагов, рессоры или торсионы) обеспечивают кинематику перемещения колеса относительно кузова. Задача этих устройств в том, чтобы сохранять плоскость вращения колеса (двигающегося вверх при сжатии подвески и вниз при отбое) в положении близком к вертикальному, т.е. перпендикулярно дорожному полотну.

Если геометрия направляющего устройства нарушена, поведение автомобиля резко ухудшается, а износ шин и всех деталей подвески, в том числе и амортизаторов, значительно ускоряется.
Отдельное внимание стоит уделить подвеске McPherson: во-первых, такая подвеска получила исключительное распространение на переднеприводных автомобилях, а во-вторых в этой подвеске амортизатор играет роль направляющего элемента и нагружен боковыми силами.

Демпфирующий элемент гасит колебания кузова, вызванные неровностями дороги и инерционными силами, а следовательно, уменьшает их влияние на пассажиров и груз. Он также препятствует колебаниям неподрессоренных масс (мосты, балки, колёса, шины, оси, ступицы, рычаги, колёсные тормозные механизмы) относительно кузова, улучшая тем самым контакт колеса с дорогой.

Работа амортизатора
Амортизаторы, как демпфирующий элемент современной подвески, получили наибольшее распространение в силу сочетания эффективности в работе, надёжности и технологичности изготовления. Основной функцией амортизатора является обеспечение надёжного контакта колеса с дорогой, комфорта и безопасности.

Для выполнения своей функции амортизатор должен поглощать определённое количество энергии колебаний, и если точнее, то не поглощать, а преобразовывать её в тепловую. Количество поглощаемой энергии зависит от массы автомобиля, жёсткости пружины и частоты колебаний.

Работа гидравлического и гидропневматического амортизаторов основывается на двух основных свойствах жидкости: её несжимаемости и вязкости.

Все производимые в мире амортизаторы делятся на две группы:
• Гидравлические (или масляные)
• Гидропневматические (или газонаполненные)

Принцип работы гидравлического амортизатора достаточно прост. В рабочем цилиндре, заполненном специальной гидравлической жидкостью, перемещается шток с поршнем, имеющим точно калиброванную систему клапанов. Рабочие характеристики подбираются индивидуально для наилучшего гашения колебаний подвески каждого автомобиля.

Поясним формирование гидравлической характеристики амортизатора:
• Если все клапаны «намертво» закрыты, а прохождение гидравлической жидкости происходит только через обходной канал в поршне, получится абсолютно жёсткая линейная характеристика. Если включить в работу клапаны сообщения с компенсационной камерой – характеристика станет «мягче». Несимметричность объясняется тем, что клапан, открывающийся на «сжатии», имеет большее проходное сечение, чем клапан, работающий на «отбое».
• Если задействовать основные клапаны, расположенные в поршне, форма характеристики уже нелинейна и по мере открытия клапанов и увеличения общего проходного сечения каналов, становится всё менее «жёсткой».

Думая о настройке подвески, надо временно абстрагироваться от брендов и рекламных кампаний. Прежде всего надо решить, какой тип амортизаторов соответствует персональному концепту вашего драйва. Академические понятия функциональности амортизатора звучат весьма определенно – гасить вертикальные колебания. Кроме того, нельзя забывать и о влиянии амортизаторов на разгонную и тормозную динамику. Так, при разгоне автомобиль «приседает» назад, нагружая задние и разгружая передние колеса, снижая тем самым их сцепление с дорогой. При торможении наблюдается обратная картина. Основная нагрузка ложится на передние колеса, а задние лишь слегка притормаживают.

И в той и в другой ситуации идеальным было бы состояние, при котором автомобиль сохранял бы свое нормальное «горизонтальное» положение. Примерно та же картина и при маневрировании, но здесь нагрузка смещается не по осям, а по сторонам автомобиля. Резюмируя, можно сказать, что главной задачей амортизаторов является удержание колеса в постоянном контакте с дорогой во избежание потери контроля над автомобилем. Для чего колесо должно как можно мягче и четче обогнуть препятствие и так же четко и быстро вернуться на дорогу, обеспечивая необходимое сцепление. Современные тенденции сводятся к тому, что, к примеру, пружины или рессоры лишь поддерживают вес автомобиля. Всю остальную работу берут на себя именно амортизаторы, как более точный инструмент. Вот почему так важен их правильный выбор.

При работе амортизатора необходимо предусмотреть множество различных вариантов и характеристик его функционирования. Ведь дорога имеет куда более сложное покрытие, чем в теории, да и автомобиль едет не всегда по прямой. Нюансов очень много. К примеру, несколько последовательных кочек заставляют его работать прерывисто: не успев толком распрямиться, амортизатор снова должен работать на сжатие. Нужно обеспечить и комфортное обрабатывание мелких неровностей, а на крупных избежать полного сжатия амортизатора, грозящего его пробоем. Здесь, как нигде более, важен компромисс – оптимальный баланс между комфортностью и точной управляемостью. Следующая большая проблема – теплообразование. И чем выше вязкость жидкости или меньше перепускные отверстия поршня, тем выше жесткость амортизатора и больше выделяется температуры при его работе. Отвод тепла – очень важная задача. Но и минусовая температура доставляет немало проблем. При большом минусе масло, находящееся внутри амортизатора, может загустеть, что сделает амортизатор более жестким. Характеристики могут меняться до нескольких десятков процентов. В данном случае все решает правильный подбор масла. Далее вопрос – аэрация. Поскольку в современных амортизаторах наряду с маслом присутствует и некий газ, они могут смешиваться в процессе работы, и масло превращается в пену. А поскольку пена, в отличие от масла, может быть сжата, это резко снижает эффективность демпфирования. Не менее важный вопрос – расположение амортизаторов. Наиболее выгодное, с точки зрения работы, место – как можно ближе к колесу, точно перпендикулярно плоскости подвески. Установка амортизатора под углом (как это часто бывает) снижает его демпфирующую эффективность (отклонение от перпендикуляра подвески +/– 50О – эффективность амортизатора 68%). Все вышесказанное возводит амортизаторы с позиции банального (с точки зрения простого обывателя) автомобильного узла в сложнейшую и многогранную науку. И как в любой другой области, здесь также существуют различные конструкторские и компоновочные решения поставленных задач. По своей конструкции амортизаторы можно разделить на несколько основных типов. По архитектуре их принято делить на одно– и двухтрубные. По наполнению: жидкостные (гидравлические) и газовые (с гидравлическим газовым подпором). Существуют и чисто газовые амортизаторы, в которых используется очень высокое давление газа (порядка 60 атм), но они не столь распространены.

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

(Принципиальная схема двухтрубного гидравлического амортизатора)

Гидравлические двухтрубные амортизаторы – некогда самый распространенный и дешевый тип демпфирующих стоек. Они довольно просты по конструкции и не столь требовательны к качеству изготовления. Состоит такой амортизатор из двух трубок: рабочей колбы, где и находится поршень, и внешнего корпуса, предназначенного для хранения избыточного масла. Поршень перемещается во внутренней колбе, пропуская масло через собственные каналы и выдавливая часть масла через клапан, находящийся снизу колбы. Этот клапан иногда называют клапаном сжатия, поскольку зачастую он отвечает за перетекание масла именно в данном такте. Эта часть жидкости просачивается в полость между колбой и внешним корпусом, где сжимает воздух, находящийся при атмосферном давлении в верхней части амортизатора. При движении назад задействуются клапана самого поршня, регулируя усилие на отбой. Длительное время именно такая конструкция превалировала на рынке амортизаторов. Но годы эксплуатации выявили ряд ее недостатков. Основным минусом является вышеупомянутая аэрация. Особенно при интенсивной работе такого амортизатора. Замена воздуха азотом (азот, будучи инертным газом, не давал деталям амортизатора корродировать, в отличие от воздуха) несколько улучшила его работу, но не решила проблему полностью. Кроме того, такие амортизаторы, имея фактически двойной корпус, хуже охлаждаются, что также отрицательно сказывается на их работе. С другой стороны, если делать их большего диаметра, удается повысить демпфирующие характеристики, одновременно снижая рабочее давление и, как следствие, температуру.

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

(Принципиальная схема регулируемого двухтрубного гидравлического амортизатора с газовым подпором (на примере конструкции амортизаторов фирмы Koni) )

Такие гидропневматические амортизаторы имеют схожую конструкцию и принцип действия с обычными гидравлическими двухтрубными стойками. Основное отличие в том, что вместо воздуха под атмосферным давлением находится инертный газ (чаще азот) под некоторым давлением (от 4 до 20 атм и более, в зависимости от назначения). Это и есть так называемый газовый подпор. Значение давления газа может быть различным для разных условий эксплуатации автомобиля. Кстати, чем больше диаметр патрона, тем меньшее необходимо давление газового подпора. Оно может различаться также для передних и задних амортизаторов. Чем же помогает газовый подпор? Прежде всего – пресловутая аэрация. Будучи под давлением, газ не смешивается с маслом столь сильно, как в предыдущем случае, улучшая работу амортизатора. Но полностью данная проблема не решена и здесь. Кроме снижения аэрации масла, газовый подпор способствует поддержанию автомобиля, выполняя роль дополнительного демпфера. То есть, даже если пружины уже сжались бы, газовый заряд в амортизаторе удерживает правильное положение автомобиля, что положительно влияет на его управляемость. Такой конструктивный подход позволяет инженерам более гибко подходить к настройкам работы амортизатора, делая его более универсальным, чем обычные гидравлические. Общая проблема всех двухтрубных амортизаторов – невозможность установки «вверх ногами». Этому мешает наполняющий их газ.

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

(Регулируемый амортизатор системы CDC на автомобиле Opel Astra разработки ZF)

Такие амортизаторы, как следует из названия, имеют лишь одну колбу, которая является и рабочим цилиндром, и корпусом одновременно. Работают они так же, как и двухтрубные, но в данной конструкции газ находится в том же цилиндре и отделен от масла особым плавающим поршнем (так называемая схема De Carbon). Газ (чаще азот) находится в своей камере, отделенной от масла, под высоким давлением (20–30 атм). Однотрубные амортизаторы не имеют нижнего клапана сжатия, как двухтрубные. Это означает, что всю работу по управлению сопротивлением и при сжатии, и при отбое берет на себя поршень. В этой связи, несмотря на кажущуюся простоту этого узла, подбор его конструкции, размера, формы и количества отверстий является весьма сложной задачей. В целом такие амортизаторы имеют высокие рабочие характеристики. Они еще точнее держат автомобиль, способствуя лучшей управляемости. Кроме того, они эффективнее охлаждаются, поскольку воздухом обдувается непосредственно рабочий цилиндр. Плюс к этому в тех же габаритах, что и двухтрубные амортизаторы, внутренний диаметр рабочей колбы будет больше, равно как и диаметр поршня. Это означает больший объем масла, более стабильные характеристики и, опять же, лучшая теплоотдача. Но есть и минусы. В отличие от своих двухтрубных «коллег», однотрубные более уязвимы от внешних повреждений. Замятая колба однозначно приводит к замене стойки, тогда как двухтрубные имеют своего рода страховку, или, если можно так назвать, щит в виде внешнего цилиндра. К минусам можно отнести также высокую чувствительность однотрубных амортизаторов к температуре. Чем она выше, тем выше давление газового подпора и жестче работает амортизатор. С другой стороны, однотрубные стойки можно устанавливать как угодно, поскольку газ плотно отделен от масла плавающим поршнем. Кстати, именно это обстоятельство позволяет автопроизводителям, устанавливая такой амортизатор штоком вниз, снижать неподрессоренные массы. Здесь же нужно сказать и о том, что часто можно встретить амортизаторы с надетой на них пружиной. Этот вариант конструкции не относится исключительно к однотрубным стойкам. Просто так добавляется дополнительный упругий элемент, а порой он и вовсе заменяет основную пружину. Такие конструкции часто имеют возможность регулировки клиренса автомобиля. Подкручивая особую винтовую гайку на корпусе амортизатора, поддерживающую пружину снизу, можно поднять или опустить автомобиль, соответственно поджав либо отпустив пружину. Своего рода эволюцией однотрубных амортизаторов являются «однотрубники» с выносной компенсационной камерой. В них камера с газовым подпором вынесена за пределы самого амортизатора в отдельный резервуар. Такая конструкция позволяет, не увеличивая размеры самого амортизатора, увеличить объем и газа, и масла, что серьезно влияет на температурный баланс (они более эффективно охлаждаются) и стабильность характеристик. Плюс к этому имеют больший рабочий ход. Но еще больший эффект от выносной камеры в том, что на пути масла, перетекающего из основного рабочего цилиндра в допкамеру, можно установить систему клапанов, которые будут играть роль клапана сжатия, как в двухтрубной конструкции. Отделив друг от друга клапана, работающие на сжатие и отбой, можно заложить много диапазонов регулировки. Можно менять жесткость работы амортизатора для различных скоростей движения поршня, например малую, среднюю и большую. И позиций таких регулировок может быть 10 и более. Порой можно встретить и весьма экстравагантную систему с набором перепускных клапанов. Кроме большого внешнего резервуара, амортизатор облеплен несколькими трубками, на концах которых находятся регулировочные головки под гаечный ключ или отвертку. По этим трубкам масло перепускается из над– и подпоршневых камер друг в друга. Регулируя эти перепускные каналы, можно получить нужные характеристики работы амортизатора на определенных режимах или, если быть точным, положениях поршня. То есть такие амортизаторы чувствительны не только к скорости перемещения поршня, но и к его позиции внутри колбы. Кроме этого, наличие большего числа трубок, по которым проходит масло, способствует лучшему его охлаждению.

что находится внутри амортизатора. Смотреть фото что находится внутри амортизатора. Смотреть картинку что находится внутри амортизатора. Картинка про что находится внутри амортизатора. Фото что находится внутри амортизатора

(Магнитная жидкость; Плоский поток (параболический профиль скорости перемещения))

Кроме примеров борьбы с явлением аэрации, были и другие варианты совершенствования конструкции таких амортизаторов. Так, например, компания Monroe, используя особые заостренные бороздки на стенках рабочей колбы, добивалась точной настройки характеристик амортизатора как для спокойной, так и для активной езды. Нужно отметить и примеры регулируемых амортизаторов, построенных по двухтрубной газонаполненной схеме. Стандартные амортизаторы также обладают возможностью регулировки, но для этого их необходимо разбирать. А есть варианты конструкций, предлагающие внешнюю регулировку жесткости. Так, фирма Koni применяет особый регулировочный штырь, проходящий через шток. Загнутый конец этого штыря, поворачивая особую эксцентриковую шайбу, создает дополнительную нагрузку на нижние пластины, позволяя настроить усилия хода отбоя. Ряд фирм осуществляют регулировку жесткости работы амортизатора схожим образом, но с использованием системы перепускных каналов в штоке, отвечающих за протекание масла, минуя дроссель. Интересный вариант регулировки жесткости предлагает фирма Kayaba. На ее амортизаторах серии AGX используется клапан, расположенный сбоку амортизатора в нижней части стойки, также регулирующий перепускание масла в обход поршня. У конструкций с выносными резервуарами возможностей настройки, как было сказано выше, куда больше, но все это механические системы, требующие остановки и ручной корректировки. Такой вариант мало подходит к современным серийным автомобилям, производители которых стремятся создать водителю и пассажирам максимальный комфорт и удобства. Для этих целей разрабатываются новые варианты амортизаторов, имеющих автоматические регулировки жесткости. Первые такие устройства представляли собой сложнейшие гидравлические системы, работающие под высоким давлением и регулирующие характеристики работы амортизаторов посредством изменения давления масла в рабочем цилиндре. В настоящее время им на смену пришли иные устройства, позволяющие изменять характеристики работы амортизаторов посредством электрических клапанов, причем как в ручном, так и в автоматическом режиме. В качестве примера можно привести систему CDC (Continuous Damping Control – непрерывный контроль демпфирования) фирмы ZF, использованную на автомобиле Opel Astra. Здесь применена схема обычного двухтрубного амортизатора с газовым подпором. Регулировка усилия на сжатие и отбой осуществляется посредством двух электромагнитных клапанов, установленных сбоку в нижней части амортизатора и внутри самого поршня. Процессорное управление отслеживает множество параметров (скорость, вертикальное ускорение каждого колеса, угол поворота руля и т. д.) и регулирует жесткость по каждому из амортизаторов в отдельности. Есть и куда более изящная разработка, имеющая, на мой взгляд, весьма радужные перспективы. В прошлом году компания General Motors представила магнитные амортизаторы на моделях Cadillac Seville и Chevrolet Corvette. Совместно с корпорацией Delphi была разработана система MRC (Magnetic Ride Control – магнитный контроль перемещения). В данной системе отсутствуют привычные способы регулировки усилия. Всю работу берет на себя магнито-реологическая жидкость. Эта жидкость работает как и в обычных амортизаторах, но при этом под воздействием электромагнитного поля, генерируемого специальными электромагнитными катушками, она способна менять свою вязкость. Причем менять с частотой 1000 раз/сек, и регулировка происходит фактически мгновенно. Реакция системы занимает всего одну миллисекунду. Нет ни двигателей, ни соленоидов, ни каких бы то ни было сложных клапанных систем. Такой магнитный амортизатор проще своих классических «коллег», но, к сожалению, пока не дешевле. Виной тому все еще высокая стоимость устойчивых к расслоению магнито-реологических жидкостей с достаточно широким температурным диапазоном работы. Но очень похоже, что будущее за подобной схемой. Уж очень много преимуществ. Упрощаются сам амортизатор и подвеска. Исключается необходимость в стабилизаторах поперечной устойчивости. Потрясающие возможности контроля жесткости подвески. Много плюсов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *