что можно наблюдать на солнце
Дневная астрономия
Все знают что астрономические наблюдения проводятся под покровом темноты, желательно вдали от яркой городской засветки. Тем не менее на небе можно увидеть много интересного даже при ярком солнечном свете. И это не только Солнце. Днем превосходно видно Луну, а при определенной сноровке можно разглядеть и сфотографировать даже некоторые планеты и космические аппараты! В статье много дневных фото и видео с различными небесными объектами.
Луна и Венера при дневном свете. Источник: Astronomy Picture of the Day, автор: David Cortner.
Я постарался сослаться на авторов всех найденных мною для статьи снимков. Авторов видеороликов с YouTube видно в самом YouTube. Там где автор не указан, использованы мои собственные фото.
Солнце
Наиболее очевидный объект для дневных наблюдений это Солнце, ведь ночью его не видно. Смотреть на Солнце можно лишь через плотный светофильтр, иначе вы испортите зрение. Можно самостоятельно изготовить фильтр используя специальную пленку, или купить готовый стеклянный фильтр. В редких случаях атмосферная дымка формирует естественный фильтр и можно разглядеть крупные пятна даже невооруженным глазом. На этом фото ниже и левее центра диска видна группа солнечных пятен AR 2396.
Ну а в небольшой телескоп с фильтром солнечные пятна выглядят вот так:
С помощью несложных манипуляций в графическом редакторе можно выявить незаметные глазу факелы — светлые структуры окружающие пятна.
Вверху снимка для демонстрации масштаба я добавил изображение Земли и Луны с соблюдением всех пропорций (диаметр и взаимное расстояние).
Многие даже не догадываются что Луна хорошо видна днем. Ее можно видеть почти каждый день, кроме дат близких к новолунию и полнолунию. Растущая Луна видна во второй половине дня, убывающая — в первой. Сейчас как раз хорошие условия видимости убывающей Луны, вы легко заметите ее утром по дороге на работу. Сфотографировать дневную Луну можно даже на мобильник:
Или на цифромыльницу:
В телескоп лунные кратеры видны и днем, а фотографии на фоне синего неба выглядят даже красивее ночных со скучным черным фоном.
Сделав несколько снимков с интервалом в сутки, можно увидеть не только смену фаз но и либрации.
A video posted by @lunogram on Aug 15, 2014 at 9:05am PDT
А вот рекордный снимок самого узкого лунного серпа, сделанный фотографом Тьерри Лего:
Во время съемки Луна была всего в четырех градусах от Солнца. Для защиты от засветки фотографу пришлось соорудить вот такое приспособление:
Ну и наконец, говоря о Луне, как не вспомнить солнечные затмения во время которых Луна проходит перед нашим главным дневным светилом.
Больше снимков недавнего затмения можно найти в моей статье Смотрим солнечное затмение вместе.
Венера
Дневную Венеру увидеть сложнее чем Луну. На первом фото в статье видно что ее поверхность значительно ярче поверхности Луны, но ее размеры малы и невооруженным глазом вы лишь увидите белую точку. Чтобы увидеть Венеру днем, выясните ее текущее положение в Stellarium или любом другом приложении-планетарии. В большинстве случаев, она будет находиться в 20-50 градусах западнее или восточнее Солнца. Встаньте так чтобы какое-нибудь здание закрывало от вас Солнце но оставляло видимым участок неба где находится Венера. Если захотите воспользоваться биноклем или телескопом, будьте осторожны. При поисках планеты всегда оставайтесь в тени чтобы случайно не посмотреть на Солнце. За несколько недель до или после нижнего соединения серп Венеры виден лучше всего (а сейчас как раз такое благоприятное время).
Узкий серп настолько ярок что просвечивает сквозь легкие облака, что хорошо видно на видеороликах ниже.
A video posted by @lunogram on Aug 30, 2015 at 4:56am PDT
A video posted by @lunogram on Aug 30, 2015 at 5:02am PDT
Юпитер
Юпитер находится гораздо дальше от Солнца. Увидеть его днем невооруженным глазом невероятно трудно, он значительно тусклее Венеры.
Соединение Юпитера и Венеры. Источник: spaceweathergallery.com автор: Francisco Diego.
По поверхностной яркости он больше похож на серп Луны.
Источник: Sky and Telescope, автор: Gary Seronik.
Тем не менее некоторым фотографам удается сделать дневной снимок на котором видны детали поверхности Юпитера и даже его спутники:
Источник: Stargazers Lounge, автор: Steve Ward.
Изредка, во времена великих противостояний, Марс сияет столь же ярко как Луна Юпитер. Правда во время противостояний Марс не виден днем — он восходит с заходом Солнца и садится на рассвете. Поэтому днем его можно засечь лишь вот в таком виде:
Источник: spaceweathergallery.com автор: Филип Романов.
Меркурий
Наблюдения Меркурия осложняются тем что на небосводе он редко удаляется от Солнца на комфортное угловое расстояние. Попробуйте найти Меркурий на этом снимке.
Венера и Меркурий. Автор: Emil Ivanov.
Если не получается, по клику открывается фото большего размера.
Хороший шанс увидеть Меркурий днем будет 9 мая 2016 года, в этот день планета пройдет по диску Солнца. Интересный факт — 26 июля 69163 года Меркурий и Венера совершат совместный транзит по Солнцу. Предыдущий одновременный транзит был в 373 173 году до н. э.
Искусственные спутники
Я уже писал что МКС не уступает по яркости Венере, следовательно ее тоже можно увидеть днем. Днем она выглядит как белая точка плывущая в синем небе. А если использовать телескоп с моторизованной монтировкой и специальный софт для отслеживания спутников, можно заснять ее на видео во всей красе.
Иногда МКС пролетает близко от Луны или даже пересекает ее диск. В этом случае увидеть и заснять ее гораздо проще так как Луна будет заметным ориентиром.
А вот пролет близ Венеры:
Источник: Astronomické události.
Если МКС пролетит на фоне солнечного диска, ее темный силуэт можно увидеть используя те же средства что и для наблюдения солнечных пятен.
Этот же пролет на видео:
A video posted by @lunogram on Apr 28, 2015 at 12:53am PDT
Предсказания пролетов МКС вблизи других небесных объектов можно получить на сайте calsky.com.
Вспышки Иридиумов могут в несколько раз превосходить по яркости МКС, правда длятся они лишь несколько секунд.
Если вы ничего не разглядели, откройте видео в полноэкранном режиме.
Дипскай
Это кажется невероятным, но используя H-alpha фильтр можно сфотографировать яркую туманность при свете Солнца. Я собрал анимацию из серии снимков M42. Первый снимок (тот где видно больше всего деталей) сделан на восходе, последний — через сорок минут после восхода.
Что можно наблюдать на Солнце?
Зеркало Pin Up
Рады познакомить посетителей нашего сайта с официальным сайтом. Зеркало доступно по ссылке: казино пин ап
Так что же можно наблюдать на поверхности Солнца? Несмотря на то, что для наблюдателя доступен только очень тонкий поверхностный слой огромной звезды, на нём происходит много всего интересного. Казалось бы, раскалённая до немыслимых температур, поверхность Солнца должна видеться нам просто как сияющий диск. Повседневная жизнь только подтверждает такую гипотезу – обычно мы видим Солнце как светящийся объект на небосводе, не различая на нём каких-либо деталей из-за нестерпимо яркого света. По этой причине нельзя смотреть на Солнце в телескоп или бинокль – собранный этими приборами, солнечный свет запросто сожжёт сетчатку глаза неосторожному наблюдателю. Однако используя специальные очень тёмные светофильтры, или просто проецируя изображение из телескопа на экран, даже при помощи самых простых оптических инструментов можно разглядеть сложную структуру поверхности Солнца. Именно так используется рефлектор ТАЛ-200 – в сочетании с плёночным солнечным фильтром, он позволяет проводить качественные наблюдения за поверхностью светила.
Давайте на время отвлечёмся от пятен на Солнце и обратимся к остальной части солнечного диска. На первый взгляд, поверхность кажется однородной, однако даже с помощью не очень мощного телескопа (не забывая про тёмный светофильтр!) можно разглядеть ячеистую структуру поверхности Солнца. Отдельные яркие ячейки (получившие название гранулы) чередуются с чуть более тёмными прожилками. Стоит отметить, что вся эта структура динамично меняется – отдельные гранулы постоянно то исчезают, то появляются, живя на поверхности звезды несколько минут. Всё это напоминает огромный кипящий котёл, где в роли пузырьков выступают тысячекилометровые гранулы. Однако размеры самого Солнца столь велики, что на его поверхности умещается до миллиона таких гранул.
Пятна и гранулярная структура поверхности солнечного диска не только интересны для наблюдения за ними, но и позволяют учёным многое выяснить о Солнце. Так, первые попытки оценить активность Солнца были предприняты в XIX веке, и были связаны как раз-таки с изучением пятен на Солнце. Несмотря на то, что тогда учёные ещё не знали о физической природе пятен, они заметили наличие некоторой закономерности в количестве и расположении пятен. Как было установлено швейцарским астрономом Рудольфом Вольфом и его немецким коллегой Генрихом Швабе, максимумы и минимумы числа пятен на Солнце повторяются каждые одиннадцать лет. Это явление получило название одиннадцатилетних циклов активности. На пике каждого цикла на поверхности светила можно наблюдать до сотни пятен, в то время как в минимуме их бывает всего несколько штук. Больше того, бывали периоды, когда на Солнце не было ни одного тёмного пятна! Сейчас понятно, что количество пятен прямо указывает на магнитную активность Солнца, а потому наблюдения за пятнами – одна из важнейших частей мониторинга солнечной активности. По мере дальнейшего развития солнечной астрономии, а также накопления материалов, учёными было установлено, что кроме самого очевидного – одиннадцатилетнего – цикла (его ещё называют циклом Швабе, по имени одного из первооткрывателей) существуют и более продолжительные периодические колебания солнечной активности, накладывающиеся на циклы Швабе. Современные астрономы выделяют вековой и тысячелетний циклы, не исключая возможности существования и более продолжительных цикличных процессов на Солнце.
Однако пятнами и гранулами дело не ограничивается. Правда для наблюдения новых, ещё более интересных объектов на поверхности Солнца, потребуется принципиально новое оборудование, такое как специальные солнечные телескопы. Эти достаточно дорогостоящие приборы позволяют рассмотреть куда более «тонкие» структуры на Солнце, недоступные даже весьма внушительным телескопам с фильтрами. Они делают доступными наблюдения за такими интересными событиями, как протуберанцы и корональные выбросы.
Протуберанцы – пожалуй, самые зрелищные процессы на поверхности Солнца. Огромные сгустки вещества, превосходящие по массе Землю, вырываются сверхмощными магнитными полями на высоту до двух миллионов километров от Солнца. В ходе этого процесса вещество протуберанцев разгоняется до скоростей в сотни километров в секунду – в десятки раз быстрее космических ракет. Протуберанцы бывают настолько огромны, что их можно увидеть с Земли даже без сверхсовременных приборов. Однако такое возможно только очень редко – во время непродолжительных полных солнечных затмений. Дело в том, что чрезвычайно яркий свет фотосферы в обычных условиях затмевает свет пусть и раскалённых, но достаточно рассеянных протуберанцев. Фильтрацией этого света и занимаются солнечные телескопы, позволяя наблюдать протуберанцы на постоянной основе.
Корональные выбросы – время от времени происходящие на поверхности Солнца мощные выбросы вещества, сопровождающиеся всплесками активности магнитного поля светила. В отличие от протуберанцев, большая часть вещества которых возвращается на Солнце, содержимое выбросов ускоряется магнитным полем до таких скоростей, что буквально выстреливает в открытый космос. Такие выбросы могут достигать Земли, вызывая в магнитосфере нашей планеты мощные магнитные бури, опасные для чувствительной электроники и сказывающиеся на самочувствие людей. Регистрировать их намного сложнее, чем протуберанцы, ведь выбрасываемое вещество очень разряжено, и его сложно заметить на фоне короны и солнечного ветра. Лишь прибегнув к помощи космических обсерваторий, астрофизикам удалось измерить параметры этого явления.
Наблюдаем Солнце: 5 видов гаджетов, от 5$ до 5000$
Как ни странно, но на Хабре/Geektimes было довольно много статей по астрономии, но про наблюдение нашего самого яркого светила практически нет ни одной статьи. Восполним этот пробел, и посмотрим как можно наблюдать Солнце. Ведь как известно, просто так в телескоп на Солнце можно посмотреть 2 раза — левым и правым глазом.
Посмотрим, как это сделать, чтобы было и интересно и безопасно.
1. Проекционный экран
Про этот способ я читал, когда еще был пионером, и испытывал его самостоятельно, с помощью трубы из очковых стекол.
Метод подходит только для труб небольшого диаметра, и не подходит для зеркальных телескопов, т.к. их внутреннее зеркало может перегреться. Но если в наличии есть небольшой рефрактор, и нужно показать окружающим например, солнечное затмение или прохождение Венеры по диску Солнца, то способ вполне неплох. При желании можно даже приобрести специальную ширму от компании Geoptik, позволяющую наблюдать проекцию с достаточным комфортом:
2. Пленка Baader Planetarium Astrosolar
Самый бюджетный и доступный для наблюдателей способ, дающий более-менее приличное качество. Примерно за 30-50$ можно купить пленку, которая внешне похожа на фольгу.
Её можно нарезать на любые размеры, и сделать из ватмана и синей изоленты адаптеры на любой инструмент, от смартфона или театрального бинокля до 10″ Добсона. Выглядеть это может как-то так:
Картинку можно получить примерно такую:
В реале, увеличение будет разумеется, зависеть от используемого инструмента, его апертуры и увеличения. Сама пленка, очевидно, изображение не увеличивает.
Небольшой готовый фильтр вместе с корпусом можно купить в Китае за несколько долларов, такой комплект может быть удобен например, для бинокля.
3. Стеклянный фильтр
По сути, способ мало чем отличается от предыдущего, но не нужен «колхоз» (это может быть как плюс, так и минус), и чуть лучше качество картинки. Цена вопроса, разумеется, тоже выше, и составляет от 30$ до 200$ в зависимости от диаметра и производителя.
Как очевидно из фотографии, данный фильтр уже нужно подбирать под конкретный диаметр трубы.
Пойдем дальше. Если мы хотим наблюдать еще больше деталей, нам понадобится специальный узкополосный фильтр. Этот фильтр пропускает только узкую полосу светового потока, и кстати говоря, является самой дорогой частью в специализированном солнечном телескопе. Посмотрим, какие модели можно найти на рынке.
4. Телескопы Coronado PST
PST расшифровывается как Personal Solar Telescope, хотя по сути, это скорее подзорная труба чем телескоп.
Фокусное расстояние у PST всего лишь 400мм, а апертура 40мм, так что на большие увеличения рассчитывать не придется. В комплекте идет окуляр на 18мм, что дает увеличение лишь 22х. Зато окуляры можно менять, так что если есть другие, то увеличения тоже можно варьировать, оптимальным можно считать диапазон до 8мм, что даст 50-кратное увеличение.
Но главный плюс Coronado — это собственно, узкополосный H-a фильтр, что позволяет наблюдать гораздо больше деталей на поверхности Солнца, и также видеть солнечные протуберанцы.
В реале мы конечно, настолько детальной картинки, как на фото ниже, не увидим, но примерную идею того, что видно на Солнце через H-a, понять можно:
И теперь о грустном — о цене. Coronado PST продается в двух вариантах, с обычным ( Видео
Что можно увидеть в телескоп на Солнце
Солнце — раскалённый шар светящегося газа в центре нашей планетной системы. Его гравитация скрепляет и удерживает на своих орбитах всё — от планет с их спутниками до мельчайших частиц пыли и мусора. Взаимодействие между Землёй и родительской звездой определяет времена года, океанические течения, погоду, климат, радиационные пояса и полярные сияния. Всё, что можно увидеть в телескоп на Солнце, напрямую влияет на самочувствие и поведение живых существ здесь.
Как выглядит Солнце
Хотя центральное светило занимает в нашей жизни такое особое положение, серьёзные наблюдения за ним начались только в 1611 году, после изобретения первого гелиоскопа немецким астрономом и механиком Кристофом Шейнером. Он модифицировал обычный телескоп, превратив его в примитивный проектор и с его помощью узнал, как выглядит Солнце и понаблюдал за «погодой» на поверхности звезды.
Наше светило с радиусом 695 508 километров не является особенно большой звездой по космическим меркам, но оно всё равно намного массивнее нашей родной планеты: одна масса Солнца — это 332 946 масс Земли, а чтобы заполнить его объём, потребуется 1,3 миллиона планет как Земля.
Поверхность звезды, фотосфера, представляет собой область толщиной 500 километров, из которой исходит большая часть видимого излучения. Оно достигает Земли примерно через восемь минут после того, как покидает фотосферу.
Как выглядит Солнце с Земли? Мы можем узнать это, просто взглянув в небо и увидев его светящийся диск. Как оно выглядит с других планет? Учитывая огромные и несопоставимые расстояния, это не так-то легко представить.
Меркурий. Меркурий на 39% ближе к звезде, чем наша планета. На его небосводе Солнце занимает в 3 раза больше места, чем на Земле.
Как безопасно посмотреть на Солнце
Хотя технически сделать это легко, большинство способов неправильные и вредные для здоровья. Опасность очевидна: свет настолько яркий, что длительное прямое воздействие может нанести непоправимый ущерб сетчатке глаз и вызвать потерю зрения или слепоту.
Не пользуйтесь импровизированными «фильтрами», такими, как закопчённое стекло, солнцезащитные очки, фильтры для фотоаппаратов, обёртки от конфет или старые оптические диски. Они уменьшают яркость Солнца, но пропускают другое вредное излучение, способное повредить глаза. Используйте только материалы, специально изготовленные для безопасного наблюдения за солнечными лучами, или стекло для дуговой сварки.
Чтобы узнать, как выглядит Солнце и безопасно за ним наблюдать, необходимо отфильтровать более 99% солнечного излучения, прежде чем оно достигнет глаз. Есть три способа:
Солнечные телескопы захватывают все фантастические детали, такие как грануляция, и конвекционное движение кипящего газа на поверхности звезды.
Что можно увидеть в телескоп на солнце
Поверхность Солнца — очень оживлённое место. Она состоит из электрически заряженного газа, приводимого в движение мощными магнитными полями. Солнечный газ постоянно движется, запутывая, растягивая и скручивая магнитные поля. Это называется солнечной активностью. Мы видим её как пятна, вспышки, факелы и другие явления.
Вот что можно увидеть на Солнце в телескоп:
Как «солнечная погода» влияет на Землю
Солнце — звезда относительно стабильная и «покладистая», но даже её умеренная активность могла бы сделать жизнь на Земле невыносимой. К счастью, наша планета хорошо защищена от таких угроз естественным щитом — магнитосферой.
Магнитосфера Земли создаётся динамо эффектом от вращения планетного ядра и защищает нас от большинства частиц, испускаемых солнцем. Когда солнечное излучение достигает Земли, оно ударяется о магнитосферу и обтекает её. Магнитное поле планеты раскрывается, как луковица, позволяя частицам солнечного ветра «стекать» вниз по силовым линиям и концентрироваться в атмосфере над полюсами. Этот эффект можно наблюдать и невооружённым взглядом. Он известен всем как полярное или северное сияние.
Следите за многочисленными изменениями Солнца, знакомьтесь с повадками солнечных пятен и медленным пульсом его цикла, и делитесь своими наблюдениями с другими. Есть старая околонаучная тусовка, с названием The Association of Lunar and Planetary Observers (ALPO). Она объединяет астрономов-любителей и профессиональных исследователей. Участники делятся материалами, обсуждают результаты своих наблюдений и создают солнечные карты, которыми охотно пользуется даже НАСА.
Что можно наблюдать на Солнце?
Так что же можно наблюдать на поверхности Солнца? Несмотря на то, что для наблюдателя доступен только очень тонкий поверхностный слой огромной звезды, на нём происходит много всего интересного. Казалось бы, раскалённая до немыслимых температур, поверхность Солнца должна видеться нам просто как сияющий диск. Повседневная жизнь только подтверждает такую гипотезу – обычно мы видим Солнце как светящийся объект на небосводе, не различая на нём каких-либо деталей из-за нестерпимо яркого света. По этой причине нельзя смотреть на Солнце в телескоп или бинокль – собранный этими приборами, солнечный свет запросто сожжёт сетчатку глаза неосторожному наблюдателю. Однако используя специальные очень тёмные светофильтры, или просто проецируя изображение из телескопа на экран, даже при помощи самых простых оптических инструментов можно разглядеть сложную структуру поверхности Солнца. Именно так используется телескоп рефлектор, в сочетании с плёночным солнечным фильтром, он позволяет проводить качественные наблюдения за поверхностью светила.
Первое, что бросается в глаза даже при беглом наблюдении – очень резкий край солнечного диска. Для огромного горячего газового шара, не имеющего чёткой границы, подобная ярко выраженная поверхность кажется неуместной. Однако всё дело в том, что почти весь видимый глазу солнечный свет исходит из тонкого слоя вещества, называемого фотосферой, чья толщина меньше трёхсот километров. Таким образом, несмотря на то, что Солнце простирается далеко за фотосферу, мы попросту не увидим слабо светящихся частей звезды.
Если мы взглянем на поверхность Солнца, то сможем увидеть на ней тёмные пятна, неравномерно распределённые по диску. Их размеры невелики, но лишь относительно масштабов самого светила – самые крупные из них в несколько раз превосходят Землю. Пятна группируются в скопления, а всего на диске их можно наблюдать несколько десятков. Учёными было установлено, что пятна причудливым образом связаны с активностью магнитного поля Солнца. В результате прохождения сверхсильных магнитных полей через фотосферу, возникают участки, чуть более холодные, чем температуры поверхности Солнца. Их-то и можно наблюдать в виде тёмных пятен. Пятна могут существовать до нескольких месяцев, совершая за это время несколько оборотов вместе со своим светилом.
При детальном наблюдении окрестностей пятен, можно заметить более яркие (и, соответственно, более горячие) области поверхности Солнца, называемые факелами. Их температура на две тысячи градусов выше, чем у солнечного диска и зачастую они окружают относительно холодные пятна. Однако факелы могут существовать и отдельно от пятен, образуя целые факельные поля – области, содержащие десятки факелов, в которых никогда не появляется пятен. Судя по всему, своему появлению факелы тоже обязаны выходам магнитных полей.
Давайте на время отвлечёмся от пятен на Солнце и обратимся к остальной части солнечного диска. На первый взгляд, поверхность кажется однородной, однако даже с помощью не очень мощного телескопа (не забывая про тёмный светофильтр!) можно разглядеть ячеистую структуру поверхности Солнца. Отдельные яркие ячейки (получившие название гранулы) чередуются с чуть более тёмными прожилками. Стоит отметить, что вся эта структура динамично меняется – отдельные гранулы постоянно то исчезают, то появляются, живя на поверхности звезды несколько минут. Всё это напоминает огромный кипящий котёл, где в роли пузырьков выступают тысячекилометровые гранулы. Однако размеры самого Солнца столь велики, что на его поверхности умещается до миллиона таких гранул.
Пятна и гранулярная структура поверхности солнечного диска не только интересны для наблюдения за ними, но и позволяют учёным многое выяснить о Солнце. Так, первые попытки оценить активность Солнца были предприняты в XIX веке, и были связаны как раз-таки с изучением пятен на Солнце. Несмотря на то, что тогда учёные ещё не знали о физической природе пятен, они заметили наличие некоторой закономерности в количестве и расположении пятен. Как было установлено швейцарским астрономом Рудольфом Вольфом и его немецким коллегой Генрихом Швабе, максимумы и минимумы числа пятен на Солнце повторяются каждые одиннадцать лет. Это явление получило название одиннадцатилетних циклов активности. На пике каждого цикла на поверхности светила можно наблюдать до сотни пятен, в то время как в минимуме их бывает всего несколько штук. Больше того, бывали периоды, когда на Солнце не было ни одного тёмного пятна! Сейчас понятно, что количество пятен прямо указывает на магнитную активность Солнца, а потому наблюдения за пятнами – одна из важнейших частей мониторинга солнечной активности. По мере дальнейшего развития солнечной астрономии, а также накопления материалов, учёными было установлено, что кроме самого очевидного – одиннадцатилетнего – цикла (его ещё называют циклом Швабе, по имени одного из первооткрывателей) существуют и более продолжительные периодические колебания солнечной активности, накладывающиеся на циклы Швабе. Современные астрономы выделяют вековой и тысячелетний циклы, не исключая возможности существования и более продолжительных цикличных процессов на Солнце.
Однако пятнами и гранулами дело не ограничивается. Правда для наблюдения новых, ещё более интересных объектов на поверхности Солнца, потребуется принципиально новое оборудование, такое как специальные солнечные телескопы. Эти достаточно дорогостоящие приборы позволяют рассмотреть куда более «тонкие» структуры на Солнце, недоступные даже весьма внушительным телескопам с фильтрами. Они делают доступными наблюдения за такими интересными событиями, как протуберанцы и корональные выбросы.
Протуберанцы – пожалуй, самые зрелищные процессы на поверхности Солнца. Огромные сгустки вещества, превосходящие по массе Землю, вырываются сверхмощными магнитными полями на высоту до двух миллионов километров от Солнца. В ходе этого процесса вещество протуберанцев разгоняется до скоростей в сотни километров в секунду – в десятки раз быстрее космических ракет. Протуберанцы бывают настолько огромны, что их можно увидеть с Земли даже без сверхсовременных приборов. Однако такое возможно только очень редко – во время непродолжительных полных солнечных затмений. Дело в том, что чрезвычайно яркий свет фотосферы в обычных условиях затмевает свет пусть и раскалённых, но достаточно рассеянных протуберанцев. Фильтрацией этого света и занимаются солнечные телескопы, позволяя наблюдать протуберанцы на постоянной основе.
Корональные выбросы – время от времени происходящие на поверхности Солнца мощные выбросы вещества, сопровождающиеся всплесками активности магнитного поля светила. В отличие от протуберанцев, большая часть вещества которых возвращается на Солнце, содержимое выбросов ускоряется магнитным полем до таких скоростей, что буквально выстреливает в открытый космос. Такие выбросы могут достигать Земли, вызывая в магнитосфере нашей планеты мощные магнитные бури, опасные для чувствительной электроники и сказывающиеся на самочувствие людей. Регистрировать их намного сложнее, чем протуберанцы, ведь выбрасываемое вещество очень разряжено, и его сложно заметить на фоне короны и солнечного ветра. Лишь прибегнув к помощи космических обсерваторий, астрофизикам удалось измерить параметры этого явления.